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Abstract

We investigated potential biases affecting the validity of the process-dissociation (PD)

procedure when applied to sequence learning. Participants were or were not exposed to a

serial reaction time task (SRTT) with two types of pseudo-random materials. Afterwards,

participants worked on a free or cued generation task under inclusion and exclusion

instructions. Results showed that pre-experimental response tendencies, non-associative

learning of location frequencies, and the usage of cue locations introduced bias to PD

estimates. These biases may lead to erroneous conclusions regarding the presence of implicit

and explicit knowledge. Potential remedies for these problems are discussed.

Keywords: implicit learning, serial reaction time task, process-dissociation procedure,

response bias
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Distorted estimates of implicit and explicit learning in applications of the

process-dissociation procedure to the SRT task

Implicit learning refers to the ability to adapt to regularities inherent in the

environment in the absence of conscious awareness about the ongoing learning process itself

or about the outcome of what is learned. This ability is fundamental for human beings as it

allows us to act optimally in stable environments with relatively little effort.

One of the most frequently utilized paradigms in the field of implicit learning is the

serial reaction time task (SRTT) originating from Nissen and Bullemer (1987). In this

standard SRTT, participants respond to locations on the screen which are mapped to

spatially corresponding keys. Participants are instructed to press the appropriate response

key whenever an asterisk occurs at a certain screen location. Unbeknownst to the

participants, the locations of the asterisk follow a regular sequence. After several blocks of

practice, the sequence is replaced by either a new but also regular sequence, or by a random

sequence. In this transfer block, performance shows a decrement that disappears almost

immediately when the original regularity is reintroduced, reflecting learning of the regularity.

Importantly, participants are not able to explicate their acquired knowledge when asked to

do so. Even with more sensitive tests including the recently introduced wagering task

(Dienes & Seth, 2010; Haider, Eichler, & Lange, 2011; Persaud, McLeod, & Cowey, 2007) or

the process-dissociation procedure (Destrebecqz & Cleeremans, 2001; Haider et al., 2011;

Jacoby, 1991), explicit knowledge of the sequence is rare. This dissociation between

performance and expressible knowledge is generally assumed to indicate implicit learning.

A central defining feature of explicit knowledge is that it is controllable, whereas

implicit knowledge is thought not to be under conscious control. Destrebecqz and

Cleeremans (2001) utilized this distinction and applied the process-dissociation (PD)

procedure to measure sequence learning. In process dissociation, performance in two

conditions of the same task is contrasted: An inclusion condition, in which explicit and

implicit knowledge both produce the same response, and an exclusion condition in which
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explicit and implicit knowledge produce opposing responses (Buchner, Steffens, & Rothkegel,

1998; for applications of the PD to sequence learning with the recognition task see Buchner,

Steffens, Rothkegel, & Erdfelder, 1997).

In their application to sequence learning, Destrebecqz and Cleeremans (2001) used a

generation task: After SRTT training, participants are asked to generate a sequence of

responses that is either as similar as possible to the learned sequence (in the inclusion

condition), or a sequence as dissimilar as possible (exclusion condition). To the degree that

explicit knowledge is available, the proportion of generated responses that match the learned

sequence should differ between inclusion and exclusion. To the degree that implicit

knowledge is available, the proportion of matching responses in the exclusion condition

should be greater than a chance baseline or control condition. In one group (i.e., RSI = 0

ms), participants were better than chance in their ability to reproduce the regularity in the

sequence, even under exclusion instructions (i.e., performance under exclusion condition, E,

was above a chance baseline B, E > B), a finding that was interpreted as reflecting sequence

knowledge. However, performance under inclusion (I) and exclusion instructions was

identical (i.e., I = E), a finding that is interpreted as indicating the absence of explicit

knowledge and instead suggests that the sequence knowledge was fully implicit. 1

The PD procedure is a simple and elegant way to disentangle controllable and

uncontrollable processes, which has been widely used across a wide range of research

questions (Yonelinas & Jacoby, 2012) and has the potential to address many open questions

in the domain of implicit learning and memory. However, some authors have raised concerns

suggesting that the assumptions underlying the PD may sometimes turn out to be overly

simplified, which, in turn, would threaten the validity of PD results (e.g., Buchner, Erdfelder,

& Vaterrodt-Plünnecke, 1995; Curran & Hintzman, 1995; Hirshman, 1998; Rouder, Lu,

Morey, Sun, & Speckman, 2008).

For instance, it has been argued that the automatic process may be confounded with

extra-experimental influences (Buchner et al., 1995; Rouder et al., 2008) or response
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tendencies (Stahl & Degner, 2007). In sequence learning, for example, participants may

bring pre-experimental knowledge to the lab that interacts with task properties, or they may

attempt to strategically generate non-regular or random sequences especially under exclusion

conditions (e.g., Boyer, Destrebecqz, & Cleeremans, 2005). These participants may be

influenced by their subjective theories about randomness, which may thereby affect

generation performance, and perhaps distort PD estimates of implicit and explicit knowledge.

The type of task may furthermore affect the validity of PD estimates. In applications

to the SRTT, discrepancies have been observed between free and cued versions of the

generation task (Destrebecqz & Cleeremans, 2001; Wilkinson & Shanks, 2004): Whereas

Destrebecqz & Cleeremans (2001), using free generation, have obtained evidence for implicit

knowledge (i.e., E > B), Wilkinson & Shanks (2004), using a cued generation task, report

the absence of implicit knowledge, with exclusion performance not distinguishable from

baseline. However, as argued by Q. Fu, Dienes, & Fu (2010), the failure to replicate the

E > B pattern could be due to a lower sensitivity of the cued generation task.

Furthermore, different types of random control conditions have been used that differ

with regard to simple frequency information or other sequence-unrelated properties (Reed &

Johnson, 1994; Stadler, 1992). For instance, participants who are trained on randomly

selected permutations of a fixed-length sequence might learn that the entire set of response

positions is used up before any position is repeated (negative recency), whereas participants

confronted with fully random material during learning might learn that response positions

are independent (Boyer et al., 2005). Although this type of knowledge is unspecific and

sequence-unrelated, it may nevertheless affect performance in the generation task and distort

conclusion about sequence knowledge if not properly controlled for.

Goal of the present study

To gauge these threats to the validity of the PD in sequence learning, and to examine

the conditions under which PD can help to understand the processes underlying sequence
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learning, we investigated the possiblity of differential effects of material (permuted

vs. random), task format (free vs. cued generation), and response tendencies on generation

performance under inclusion and exclusion conditions.

Simple frequency information and sequence-unrelated properties.

Generation performance may be contaminated by knowledge unrelated to the sequence such

as the frequency of repetitions and reversals (Reed & Johnson, 1994). Repetitions and

reversals are often not included into the regular sequence because they are considered

especially salient and prone to lead to explicit knowledge (Stadler, 1992). If participants

(explicitly or implicitly) pick up this absence of reversals in the learning phase, they may use

this knowledge in the generation task, for instance, to generate fewer reversals across both

conditions, or even to generate fewer reversals in the inclusion than the exclusion task. In

other words, if the sequence does not contain reversals, then a generated sequence that

reflects this property of few reversals is scored as above-chance performance. The finding

that generation performance is above baseline will suggest the presence of implicit sequence

knowledge. If the strength of this effect furthermore differs between the inclusion and

exclusion instructions, it may artificially produce an I > E finding and lead to erroneous

conclusions suggesting the presence of explicit sequence knowledge.

Another type of sequence-unrelated information that may affect generation

performance is the frequency of response locations: When some responses are more frequent

than others in the learning phase – for instance, in mixed first-/second-order sequences –

participants may pick up this information (explicitly or implicitly) and use it in the

generation task (Reed & Johnson, 1994). More importantly, if the PD instruction – inclusion

or exclusion – can affect the expression of this knowledge, generation performance may be

differentially affected, results may be distorted or artifactual, and substantive conclusions

might be erroneous.

The present study investigates the degree to which learning of such sequence-unspecific

properties (reversals, zero-order frequencies) may distort estimates of explicit and implicit
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second-order sequence knowledge.

Free and cued generation tasks. In applications of the PD to sequence learning,

two variants of the generation task have been used: free generation (Destrebecqz &

Cleeremans, 2001) and cued generation (Wilkinson & Shanks, 2004). In the free generation

task, participants are asked to generate a longer stretch of responses without interruption

(e.g., 96 trials in Destrebecqz & Cleeremans, 2001). In cued generation, on the other hand,

on each trial, a small sequence of stimuli and responses is given as a cue by the experimenter,

after which the participant is asked to generate the response that would occur next in the

sequence. The results obtained with both tasks have been found to diverge: Using free

generation task, Destrebecqz and Cleeremans (2001) reported evidence for implicit

knowledge (i.e., exclusion performance was above baseline). In contrast, Wilkinson and

Shanks (2004) could not replicate this E > B finding using a cued generation task. The type

of generation task may explain this discrepancy if cued generation artificially lowers (or free

generation artificially boosts) exclusion performance (but see Q. Fu, Fu, & Dienes, 2008, for

a reward-based explanation). Alternatively, the failure to find E>B in cued generation may

be taken as evidence for the suboptimal sensitivity of the cued generation task. The present

study compares free and cued generation tasks and their ability to detect learning of

sequence-unspecific properties.

Response tendencies and subjective intuitions about randomness. In a

control condition of an SRTT study, sequence information is typically not available (e.g.,

Haider et al., 2011). Participants are nevertheless asked to generate transitions reflecting

some ‘regular’ sequence under inclusion conditions, and to avoid generating such a ‘regular’

sequence under exclusion conditions. In this situation, subjective notions of regularity and

randomness are likely used to generate what participants regard as more regular sequences

under inclusion conditions and less regular (or more random) sequences under exclusion

conditions. If these subjective notions deviate systematically from the researcher’s notion of

randomness that is used to determine the chance baseline, they may bias the pattern of
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results and distort substantive conclusions. The present research addresses the question

whether response tendencies may bias generation performance, whether response tendencies

are acquired during the learning phase or reflect pre-experimental biases, and whether such a

bias differentially affects inclusion versus exclusion conditions.

Interactions between these factors. The factors discussed above may occur in

combination, with the effect of creating potentially more complex distorting influences on

PD estimates. For instance, on top of subjective notions of randomness, sequence-unspecific

properties of the training materials may be used to inform participants’ response tendencies

and perhaps lead to systematic differences between inclusion and exclusion. In addition,

response tendencies informed by frequency information may interact with variants of the

generation task. For instance, if participants have a tendency to avoid generating recent

response locations (Boyer et al., 2005), the simple frequency information about reversals or

high- versus low-frequency response location may differentially affect performance under

different generation task variants (free or cued). The present study explores such potential

interactive effects of simple frequency information, task format, and reponse tendencies.

The current study

In the present study, which is part of a project aiming at evaluating the validity of the

PD procedure in sequence learning, we were interested in the ability of the PD procedure to

signal the absence of (both implicit and explicit) sequence knowledge when such knowledge

is in fact absent. In addition, we wanted to identify appropriate control conditions to serve

as a baseline with which to compare experimental conditions.

We aimed at exploring effects of response tendencies, simple frequency information and

unspecific properties of the material, and task properties as well as their interactions. Focus

of the present study is their potential of distorting PD estimates of implicit and explicit

learning. The present study realized three different ‘control’ conditions without any sequence

information:
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• a training phase with randomly drawn permutations of a second-order 8-item sequence,

• a training phase with randomly drawn response locations (from a uniform distribution),

• a no-learning condition in which participants merely familiarized themselves with the

task.

Orthogonally, we implemented the two different versions of the generation task (free

vs. cued).

We investigated whether inclusion and exclusion performance differed under the three

control conditions and in the free versus cued task variants. If the PD model yields valid

measures of implicit and explicit sequence knowledge, generation performance should be at

chance level in all conditions. If, however, simple frequency properties of learning materials

also affects generation performance, we would expect this to be reflected in the permuted

condition when compared to the random condition. To the degree that response tendencies

lead to deviations from chance level, this should be evident from the no-learning condition

but reflected in all three conditions.

Method

Design

The study realized a 3 (material: permuted vs. random vs. no-learning) × 2 (generation

task: free vs. cued generation) × 2 (PD instruction: inclusion vs. exclusion) × 2 (block order :

inclusion first vs. exclusion first) design with repeated measures on the instruction factor.

Participants

190 participants (143 women, with a mean age of 25 years, range 18-59 years)

completed the study (data from 8 participants could not be used due to a programming

error, one participant failed to follow instructions during SRTT). Most were undergraduates
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from University of Cologne. Participants received either course credit or 7 Euro for their

participation and were randomly assigned to experimental conditions.

Materials

We used two different types of pseudo-random material:

• A permuted sequence was randomly generated for each participant anew by drawing

with replacement from the set of all possible permutations of a second-order 8-item

sequence. For a given participant, each sequence was construed by randomly selecting

two of the six locations to occur twice in the sequence. Per block, 18 permutations

were drawn from the set.

• A random sequence was randomly generated for each participant anew by drawing

with replacement from a uniform distribution of six response locations.

In a third no-learning condition, participants performed 20 responses drawn randomly

in order to familiarize themselves with the task. They were instructed, prior to the

generation task, to imagine they had just worked on a learning phase and to generate the

sequence they may have encountered there.

In all conditions, the sequence adhered to the following (additional) restrictions: (1)

there were no direct repetitions of response locations, and (2) there were no response

location reversals (i.e., A-B-A). As a consequence of the random generation process,

frequencies of response locations, first-order transitions, and second-order transitions varied

across participants. To determine correct responses in the generation task, we computed an

individual criterion for each participant based on their individual transition frequencies.

Procedure

The experiment consisted of three consecutive parts: First, participants worked on a

SRTT (the training phase), followed by a generation task and a postexperimental interview.
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In the learning phase, participants in the permuted and random conditions performed a

SRTT consisting of 6 blocks with 144 trials each (total of 864 responses). Participants in the

no-learning condition performed only 20 random trials to familiarize themselves with the

SRTT. SRTT and generation task were run on 17" CRT monitors with a screen resolution of

1024px × 768px. The viewing distance was approximately 60cm. A horizontal sequence of

six white squares (56px × 56px) was presented on a grey screen. The distance between

squares was 112px. Each screen location corresponded to a key on a QWERTZ keyboard

(from left to right Y, X, C, B, N, M). Participants had to respond whenever a square’s color

changed from white to red by pressing the corresponding key. They were instructed to place

the left ring-, middle- and index fingers on the keys Y, X and C. The right index-, middle-

and ring fingers were to be placed on keys B, N and M. There was no time limit for

responses in the learning phase (nor in the generation phase). A warning beep indicated an

incorrect response. The response-stimulus interval (RSI) was 250 ms.

Following the SRTT phase, participants were told that stimulus locations during the

SRTT followed some underlying sequential structure (participants who were not exposed to

the SRTT phase were asked to imagine that they had experienced an SRTT in which

locations followed some underlying sequential structure). The generation instructions were

presented next, with order of inclusion vs. exclusion task counterbalanced across participants.

Under inclusion (exclusion) instructions, participants were told to generate a sequence that

is as similar (dissimilar) as possible to the sequence from the learning phase. For both

instructions, participants were instructed to follow their intuition if they had no explicit

knowledge about the underlying sequence. Direct repetitions were explicitly discouraged and

were followed by a warning beep.

In the free generation task, after an initial sequence of three cue locations, participants

freely generated 120 consecutive response locations. Participant were instructed that three

squares would appear to which they had to respond; subsequently, question marks appeared

at all locations and participants’ key presses were reflected by the corresponding square’s
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color changing to black. In the cued generation task, in each of 120 trials, 3 to 5 stimulus

locations (taken from learning materials) were presented as cues, and participants had to

respond with the corresponding key, in order to activate any sequence knowledge, after

which the next response location had to be generated by the participant. Participants were

instructed that a few squares would first appear to which they had to respond; subsequently,

the question marks appeared and participants were asked to freely choose the trial’s final

response location.

Upon completing the computerized task, participants were asked to complete a

debriefing questionnaire containing the following items: ‘Did you notice anything special

during the task? Please note everything that comes to mind.’, ‘One of the tasks mentioned a

sequence in which the squares lit up during the first part of the study. In one of the

experimental conditions, the squares did indeed follow a specific sequence. Do you think you

were in this condition or not?’, ‘How confident are you (in %)?’, ‘Can you describe the

sequence in detail?’. Subsequently, participants were asked to indicate, for each of the six

response keys, the next key in the sequence on a printed keyboard layout. Finally,

participants were thanked and debriefed.

Results

For all analyses, a significance criterion of α = .05 was used. If sphericity was violated

in repeated-measures ANOVAs, Greenhouse-Geiser-corrected degrees of freedom and p values

were used. The raw data (as well as additional supplemental materials) are available from

https://github.com/methexp/pdl1. 2

SRTT Training phase

The mean RTs obtained over training blocks are shown in the left panel of Figure 1,

separately for permuted and random material (in this and all following training-phase

analyses, we excluded RTs of the first trial of each block and of trials that resulted in an

error). Analysing RTs using a 2 (material: permuted vs. random) × 6 (block number)

https://github.com/methexp/pdl1
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ANOVA revealed a significant main effect of material, F(1, 117) = 5.62, p = .019, η2
G = .042,

with slower responses for random material than for permuted material, and a significant

main effect of block number, F(2.93, 342.59) = 13.69, p < .001, η2
G = .011, reflecting practice

effects. The factors material and block number did not interact, F(2.93, 342.59) = 2.02, p =

.112, η2
G = .002, indicating that any knowledge was acquired already during the first block.

For the group with permuted material, some locations were presented twice within

each pseudo-sequence. The right panel of Figure 1 shows the mean RTs for these two types

of stimuli. A 2 (frequency: high vs. low) × 6 (block number) ANOVA revealed a main effect

of frequency, F(1, 55) = 19.31, p < .001, η2
G = .030; high-frequency responses were faster

than low-frequency responses. The main effect of block number was also significant, F(3.72,

204.69) = 6.13, p < .001, η2
G = .014, but not the interaction, F(3.87, 212.88) = 1.80, p =

.132, η2
G = .001. These findings suggest that participants in the permuted condition acquired

some form of simple response-location frequency knowledge that benefitted their SRTT

performance, and especially so for the more frequent responses.

Generation task

In the free generation condition, after an initial sequence of three cue trials,

participants freely generated 120 consecutive response locations. In the cued generation

condition, in each of 120 trials, three to five stimulus locations (taken from learning

materials) were presented as cues and participants had to respond with the corresponding

key. For each of the 120 trials, a response triplet consisted of the previous two locations as

well as the location of the current response (in the cued generation condition, the response

triplet consisted of the last two cue locations and the current response location; in the free

generation condition, the response triplet consisted of the previous two response locations as

well as the current response location; for the first two trials of each generation block, the

locations of the corresponding cue trials were used). We calculated the proportion of triplets

that were consistent with training sequences (see Appendix A). 3 Figure 2 depicts the pattern
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of correctly generated triplets as a function of generation task, material, and PD instruction.

Correctly generated second order transitions. The proportions of correctly

generated triplets were analysed using a 3 (material: permuted vs. random vs. no-learning)

× 2 (generation task: free vs. cued) × 2 (PD instruction: inclusion vs. exclusion) × 2 (order :

inclusion first vs. exclusion first) ANOVA. It revealed a main effect of PD instruction, F(1,

169) = 4.75, p = .031, η2
G = .010, more correct triplets were generated during inclusion than

during exclusion blocks. This I > E pattern suggests the presence of explicit knowledge,

despite the absence of sequence information in the training material.

The ANOVA also revealed an interaction of material × generation task, F(2, 169) =

5.88, p = .003, η2
G = .042. Analysing only free generation using a 3 (material: permuted

vs. random vs. no-learning) × 2 (PD instruction: inclusion vs. exclusion) × 2 (order :

inclusion first vs. exclusion first) ANOVA revealed a main effect of material, F(2, 83) = 6.72,

p = .002, η2
G = .076 (and again the main effect of PD instruction, F(1, 83) = 4.13, p = .045,

η2
G = .024). Tukey’s HSDs revealed a significant difference between permuted and random, p

= .001, the difference between permuted and no-learning group trended to be significant, p =

.083, random and no-learning groups did not differ from each other, p = .257. Analysing

only cued generation revealed no effects, suggesting that the free generation task was more

sensitive in picking up learning effects on generation performance.

To summarize, there was a main effect of PD instruction as well as an effect of material

in the free-generation data; no effects were obtained in the cued-generation data. In the

process-dissociation logic, the effect of PD instruction suggests the presence of explicit

knowledge. In addition, the effect of material suggests the presence of implicit knowledge in

the permuted condition. Next, we will apply two different PD analysis stategies to these data

to investigate more formally whether, given the assumptions underlying the PD approach can

be upheld, the pattern is indeed indicative of the presence of explicit and implicit knowledge.

Ordinal PD. We first applied the ordinal PD approach (Hirshman, 2004). It

proposes a model-free analysis strategy of PD data by deriving four critical data patterns of
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inclusion and exclusion performance changes across two conditions that imply differences in

automatic and controlled processes between the conditions. For instance, it can be concluded

that both the automatic and the controlled processes are stronger in one condition if

inclusion performance is greater in that condition but exclusion performance is comparable

in both conditions. Also, it can be concluded that the automatic process is greater in one

condition if both inclusion and exclusion performance are greater in that condition.

We screened the free-generation data for these data patterns by separately comparing

inclusion and exclusion performance across conditions of the material factor. Inclusion

performance was affected by material, F(2, 83) = 5.42, p = .006, η2
G = .116: it was greater

in the permuted than in both the no-learning group, F(1, 55) = 6.70, p = .012, η2
G = .109,

and the random group, F(1, 53) = 11.65, p = .001, η2
G = .180; in the latter two, performance

was comparable, F(1, 58) = 0.08, p = .777, η2
G = .001. Exclusion performance was also

affected by material, F(2, 83) = 2.93, p = .059, η2
G = .066; specifically, it was greater in the

permuted than the random condition, F(1, 53) = 5.26, p = .026, η2
G = .090, but did not

differ between the other two conditions (no-learning vs. permuted: F(1, 55) = 0.24, p = .628,

η2
G = .004; no-learning vs. random: F(1, 58) = 3.53, p = .065, η2

G = .057).

Comparing the permuted and no-learning conditions, performance was greater in the

permuted group under inclusion instructions but was identical in both groups under

exclusion instructions. This data pattern implies increased levels of both the automatic and

the controlled process in the permuted as compared to the no-learning condition.

Comparing the permuted and random conditions, performance was greater in the

permuted group under both inclusion and exclusion instructions. This data pattern implies

an increase in the automatic process in the permuted as compared to the random condition

but no effect on controlled process.

These results suggest that participants acquire some form of implicit knowledge from

permuted material that they can use to produce above-chance levels of correct triplets in the

free generation task. They also suggest that the permuted and random materials allow
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participants to acquire some form of explicit knowledge which they can use to perform better

under inclusion than under exclusion conditions.

PD equations. The same interpretation was suggested when the PD equations were

used to obtain quantitative estimates of explicit and implicit knowledge. Based on the

opposition logic, correct performance under inclusion instructions can arise due to controlled

processes (C) or – should these fail – due to automatic processes (A),

p(correct|inclusion) = C + (1− C) ∗A. Under exclusion instructions, the controlled process

leads to an incorrect response, and correct performance is based only on automatic processes

in the absence of controlled processing, p(correct|exclusion) = (1− C) ∗ A. Automatic and

controlled parameters could differ across experimental conditions, resulting in a total of 12

parameters (i.e., separate sets of A and C for two generation task variants, multiplied by

three levels of the material factor). Parameters were estimated using the HMMTree software

and the MPTinR package (Singmann & Kellen, 2013; Stahl & Klauer, 2007). Parameter

estimates are given in Appendix B.

Hypotheses are tested by imposing restrictions on parameters and evaluating whether

these restrictions significantly harm the model’s goodness of fit, in which case the associated

hypothesis cannot be upheld. 4

To investigate the evidence for any form of learning, we analysed whether there was

evidence for explicit knowledge by testing whether controlled parameters could be restricted

to zero. This was not possible without substantially harming goodness of fit,

∆G2
(df=6) = 28.19, p < .001. This is consistent with the above findings of an effect of PD

instruction, as well as the conclusions drawn from the ordinal PD approach about the

presence of explicit knowledge. As above, this effect was strongest in the free generation

condition ∆G2
(df=3) = 23.55, p < .001; it was clearly present in both the permuted

(∆G2
(df=1) = 13.95, p < .001) and the random material (∆G2

(df=1) = 9.60, p = .001). In the

cued-generation condition, there was a much weaker effect which was only marginally

significant, ∆G2
(df=3) = 4.64, p = .074, and restricted to the permuted material
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(∆G2
(df=1) = 2.03, p = .077) but absent for the random material (∆G2

(df=1) = 0.00, p > .999).

Next we analysed whether there was evidence for implicit knowledge, first by testing

whether a restriction of A parameters to an a-priori chance level of .2 can be maintained.

This was clearly not the case, ∆G2
(df=6) = 172.68, p < .001. Even if only the no-learning

condition was considered, the A parameters were greater than the a-priori chance level,

∆G2
(df=2) = 74.26, p < .001, suggesting that participants had acquired substantial implicit

knowledge. The A parameters could also not be set equal across materials,

∆G2
(df=4) = 53.14, p < .001, confirming the above findings that the amount of acquired

implicit knowledge differed across conditions. This was the case in the free-generation

condition, ∆G2
(df=2) = 35.92, p < .001, as well as in the cued-generation condition,

∆G2
(df=2) = 17.22, p < .001. However, the patterns differed across conditions: In the

free-generation task, implicit knowledge estimates were ordered permuted > no-learning >

random; in the cued-generation task, the order was no-learning = random > permuted.

Taken together, when the PD equations were used to obtain estimates of explicit and

implicit knowledge from the present data, results suggest that participants acquired both

implicit and explicit knowledge in the control conditions. Whereas explicit knowledge was

detected only in the free-generation task, implicit knowledge was detected in both tasks (but

patterns differed between tasks).

Interim summary

In three different control conditions, we computed the proportion of generated

responses that matched the learning materials to test for any effect of implicit or explicit

knowledge acquired from the learning phase. We obtained converging evidence from three

different approaches: (1) In ANOVAs, the proportions of correctly generated responses

differed as a function of material (this effect was restricted to the free generation task), as

well as of PD instruction. (2) The ordinal PD approach, when applied to the free generation

data, yielded evidence for greater implicit knowledge in the permuted than in the random
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and no-learning groups. It also yielded evidence for explicit knowledge in the permuted

condition (and, by implication, in the random condition). (3) The PD equations yielded

estimates of the controlled process, reflecting explicit knowledge, that were significantly

different from zero for the free-generation data. They also yielded estimates of the automatic

process, reflecting implicit knowledge, that were above chance levels for 4 out of 6

experimental conditions.

Taken together, despite the fact that the material in the learning phase did not contain

any sequence information, the PD approach using generation tasks yielded ‘evidence’ for

both implicit and explicit knowledge. In the following sections, we will try to account for

these findings in terms of sequence-unrelated frequency properties, response tendencies, and

cueing artifacts.

Sequence-unrelated frequency properties

First, we analysed the proportion of reversals as well as the proportion of high- versus

low-frequency locations (as manipulated in the permuted condition) that participants

generated in both versions of the task.

Reversals. Figure 3 shows participants’ proportions of reversals (e.g., 1-3-1)

generated during inclusion and exclusion (where triplets that contained a repetition were

excluded from analyses). By chance, a reversal would be generated in 1 out of 5 cases.

We conducted a 3 (material: permuted, random, no-learning) × 2 (generation task:

free vs. cued) × 2 (PD instruction: inclusion vs. exclusion) × 2 (order : inclusion first

vs. exclusion first) ANOVA of the proportion of reversals. The ANOVA revealed a main

effect of PD instruction, F(1, 169) = 22.14, p < .001, η2
G = .057: More reversals were

generated under exclusion than under inclusion instruction.

The ANOVA also revealed a main effect of material F(2, 169) = 3.75, p = .025, η2
G =

.024, that was qualified by an interaction of material and generation task, F(2, 169) = 3.65,

p = .028, η2
G = .023: The effect of material was restricted to the free-generation condition,
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F(2, 83) = 4.84, p = .010, η2
G = .063; it was not found in the cued-generation condition, F(2,

86) = 1.70, p = .189, η2
G = .019. We further analysed the effect of material in the

free-generation condition using Tukey’s HSDs: The random group generated more reversals

than the other groups (no-learning group, p = .012, permuted group, p = .053), which did

not differ from each other, p = .897.

Finally, and perhaps most importantly, as apparent from Figure 3 the proportion of

reversals was below chance for all materials. This effect was most prominent in the

no-learning group which had the smallest proportion of reversals. The overall below-chance

generation proportions of reversals can therefore not be interpreted as an effect of training.

It is more likely that they reflect a response bias that participants bring into the lab

(e.g., Boyer et al., 2005). If reversals represent a regular pattern, according to participants’

subjective theory of randomness, they should tend to avoid generating such regularities when

attempting to produce a random sequence. The finding that more reversals were generated

under exclusion conditions than under inclusion conditions would then reflect participants’

attempt to generate a non-random sequence under exclusion conditions that is most

dissimilar to the random sequence from the training phase. This strategy may underlie the

I > E pattern of correct responses obtained above that would suggest the presence of explicit

knowledge: In cases where reversals occurred at chance levels in the sequence, the tendency

to avoid generating reversals would lead to an underestimation of (implicit and/or explicit)

knowledge. In the present case, in which no reversals were encountered during learning,

suppressing reversals leads to overestimated implicit knowledge. If this tendency is stronger

under inclusion instructions than under exclusion instructions, as we have found here, it may

erroneously suggest that participants have acquired explicit knowledge. Thus, the proportion

of reversals that differed across PD instructions may be responsible for the above findings.

Correct generation performance when excluding reversals. Reversal

generation proportions, whether reflective of extra-experimental response biases or not, may

have distorted the above PD analyses and erroneously suggested the presence of implicit
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and/or explicit knowledge. We therefore repeated the above analyses after excluding

reversals, to investigate whether the above patterns of I > E and E > B hold also for the

remaining types of transitions. Figure 4 shows the proportion of correct generation responses

after removal of reversals.

After excluding reversals from analyses, an ANOVA revealed only a significant

interaction of material × generation task, F(2, 169) = 4.39, p = .014, η2
G = .031, and a trend

towards a generation task by PD instruction interaction, F(1, 169) = 3.46, p = .065, η2
G =

.008. Crucially, the main effect of PD instruction was no longer significant, F(1, 169) = 0.42,

p = .519, η2
G = .001.

As above, the effect of material was limited to the free-generation task, F(2, 83) =

4.53, p = .014, η2
G = .053, it was absent from the cued-generation task, F(2, 86) = 1.24, p =

.296, η2
G = .019. Tukey’s HSDs replicated the above finding that the permuted group

generated more correct responses than the random group, p = .001, and tended to generate

more correct responses than the no-learning group, p = .083. The random and no-learning

groups did not differ from each other, p = .257.

Excluding reversals eliminated the main effect of PD instruction, an effect that is

typically interpreted as evidence for explicit knowledge. This shows that conclusions drawn

from applications of PD to the SRTT can be distorted by response-tendency artifacts:

Participants appeared to possess explicit and controllable knowledge about the material but

in fact merely avoided generating reversals, especially under inclusion instructions.

High-frequency locations. Next, we investigated effects of the response location

frequency manipulation in the permuted condition. The above differences in correct

generation performance between permuted and the other two groups might be explained by

the fact that the permuted group was able to acquire knowledge about the unequally

distributed location frequencies: The permuted group was trained on 8-response sequences

constructed from six response locations, with two of the locations doubled. For a given

participant, the two selected locations remained constant throughout the training phase and
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were therefore practiced more frequently than the other four response locations. This was

reflected in faster responses at high-frequency compared to low-frequency response locations

(see above, Figure 1).

In the absence of learning, one would expect one third (i.e., two out of six) of

generated responses to be high-frequency locations. If participants in the permuted condition

acquired and used knowledge to generate more high-frequency locations, this would increase

their chances of producing a correct triplet. This is because approximately two thirds of the

possible triplets end in a high-frequency location (in the permuted learning material, on

average, a high-frequency location was the correct response for approximately 22 out of 30

transitions). Thus, the probability of generating a correct triplet may have been inflated by

a tendency to generate an above-chance proportion of high-frequency locations.

The proportion with which high-frequency locations were generated is illustrated in

Figure 5. We analyzed these proportions by way of a 2 (generation task: free vs. cued) × 2

(PD instruction: inclusion vs. exclusion) × 2 (order : inclusion first vs. exclusion first)

ANOVA. Consistent with the above finding that participants responded faster to

high-frequency locations during training, we found evidence that participants learned to

match the response frequencies during generation: responses encountered more frequently

during the SRTT were also generated more frequently. Yet, this tendency was affected by

the type of generation task, F(1, 52) = 13.97, p < .001, η2
G = .144: more high-frequency

locations were generated in the free generation than in the cued generation test.

Additionally, there was a trend towards an interaction of generation task and PD instruction,

F(1, 52) = 3.04, p = .087, η2
G = .021.

For free generation, the proportion of high-frequency locations generated was above the

1/3 chance level in both the inclusion blocks, t(26) = 2.95, p = .007, d = 0.57, and in the

exclusion blocks, t(26) = 2.47, p = .020, d = 0.48. The proportion was below 1/3 for cued

generation in the inclusion blocks, t(28) = -2.58, p = .015, d = -0.48, bot not in the

exclusion blocks, t(28) = -0.84, p = .407, d = -0.16. The proportion of high-frequency
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locations in cued generation may be influenced by cueing artifacts as illustrated below.

In free generation, there was a tendency to generate high-frequency response locations

at above-chance levels. As suggested above, this tendency might explain the above-chance

generation of correct triplets in the permuted condition that remained after excluding

reversals.

Effect of elevated high-frequency location generation rates on correct

generation performance. To provide support for this interpretation, we investigated

whether an above-chance generation rate as observed in the permuted condition is necessary

and sufficient to account for this pattern. First, we corrected for the trend to generate more

high-frequency locations by equally weighing correct generations for each response location.

For the permuted group we calculated the proportions of correctly generated triplets

(excluding repetitions and reversals) separately for triplets that were completed by a

high-frequency location and those completed by a low-frequency location. We then

calculated the weighted mean correct performance, with one third as a weight for the two

high-frequency locations and two thirds as the weight for low-frequency locations. Analyses

of the equally-weighted free-generation data no longer revealed any significant effects.

Crucially, the effect of material was no longer significant, F(2, 83) = 1.44, p = .243, η2
G =

.017. Perhaps trivially so, all significant findings disappeared after we eliminated the greater

weight of the high-frequency locations in determining the proportion of correct triplets. This

suggests that the higher proportion of high-frequency locations was necessary to produce the

above effect.

To test whether the only slightly above-chance generation of high-frequency responses

was sufficient to explain the above pattern of correctly generated triplets, we simulated data

for each participant based only on their average proportions of high-frequency and

low-frequency responses. 5

For a participant’s simulated dataset, we then determined the proportions of correctly

generated triplets as above (i.e., based on the material in the learning phase, and after
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excluding reversals). We conducted the same analysis as above on the simulated data for the

free-generation task. Importantly, the simulated data replicated the effect of material, F(2,

87) = 49.64, p < .001, η2
G = .447: Tukey’s HSDs revealed significant differences between

permuted and the other two groups, both ps < .001, and no difference between random and

no-learning group, p = .986.

The above results demonstrate that the slightly elevated generation rate of

high-frequency responses was necessary and sufficient to produce the performance advantage

in the permuted-material condition. They illustrate how sequence-unrelated frequency

properties of the training material may affect generation performance, and thereby, PD

estimates of underlying processes.

Effects of generation task

Whereas the proportion of reversals as well as high-frequency locations affected

performance in free generation, similar influences were not observed on cued-generation data.

This suggests that the cued generation task may be less sensitive to subtle effects of learning.

The cued generation task has been criticized because the cues may contain information

about the sequence that may affect generation performance and distort estimates of learning.

Here we investigated potential effects of cues on generation responses that may occur even in

control conditions and in the absence of informational influence.

As cues, participants were presented with brief segments of response locations taken

from the learning phase. It is known that recent responses may be less likely to be generated

(e.g., Boyer et al., 2005). This bias may affect generation performance selectively in the

permuted condition. Because the permuted material contained high-frequency as well as

low-frequency response locations, the same was true for the cues presented to participants in

the permuted condition during the cued-generation task. As a consequence, the bias to avoid

recent locations would apply more strongly to high-frequency locations. This could account

for the above finding that high-frequency locations were generated at below-chance levels in
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the cued generation task, and for the suppressed levels of correct performance in the

permuted condition in that task.

For the cued generation task, Figure 6 shows the proportion of response locations that

were also presented as a cue on their respective trial. With three to five cues presented on

each trial (and direct repetitions prohibited and excluded from analyses), chance level of

generating a location that had just been presented equalled 3/5 = .6.

A 3 (material: permuted, random, no-learning) × 2 (PD instruction: inclusion

vs. exclusion) × 2 (block order : inclusion first vs. exclusion first) ANOVA revealed a main

effect of material, F(2, 86) = 3.41, p = .038, η2
G = .042. Tukey’s HSDs revealed a significant

difference between the permuted and no-learning groups, p = .026, all other ps > .24. The

ANOVA also revealed a main effect of PD instruction, F(1, 86) = 10.24, p = .002, η2
G = .051:

more repetitions of cue locations were generated under exclusion conditions. This effect was

qualified by an interaction PD instruction × block order, F(1, 86) = 6.06, p = .016, η2
G =

.031, which indicates that the effect of PD instruction differed between participants who

worked under inclusion instructions in the first generation block and under exclusion

instructions in the second block and those who received the PD instructions in the reverse

order. To further explore this interaction, we analysed first and second blocks using separate

ANOVAs, thus turning the PD instruction factor into a between-subjects factor. In the first

block, only the main effect of material turned out to be significant, F(2, 86) = 3.67, p =

.030, η2
G = .079. In the second block, only the main effect of PD instruction was significant,

F(1, 86) = 10.91, p = .001, η2
G = .113. 6

These results suggest three conclusions: First, the fact that the tendency to avoid

generating cued locations was also present in the no-learning condition suggests that it was

not acquired during the SRTT training but either reflects pre-experimental response

tendencies, or, alternatively, it may reflect a tendency of the cued generation task to bias

generation performance against repeating the cue locations.

Second, the cue-avoidance bias was influenced by the type of learning material in the
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first but not the second block. This suggests that, while the cued generation task is sensitive

to effects of learning during the first block, this is no longer the case during the second block.

This finding further supports the notion that the cued generation format may affect

generation performance, and that over time this influence becomes stronger than the effects

of learning.

Third, cue-avoidance bias was stronger under inclusion than under exclusion

instructions in the second block of the generation task. This suggests that participants can

acquire response strategies during the cued-generation task that help them produce different

outcomes under inclusion and exclusion instructions.

Whether or not this tendency leads to artificially elevated levels of correct responses

largely depends on the sequence material that is used. Common sequences (e.g., Q. Fu et al.,

2010, 2008; Wilkinson & Shanks, 2004) contain only one reversal within a four-position

sequence consisting of 12 triplets. Typically, only two locations are presented as cues on each

trial to avoid informative influences, and direct repetitions are not allowed. In this case, the

strategy to avoid generating a cue location would lead to a correct-performance rate of

approximately 46% (i.e., a .5 chance to generate a correct response for 11 out of 12 triplets

and a zero chance for the single reversal among the 12 triplets). This is rather high relative

to a chance-level baseline of .33 (c.f., Q. Fu et al., 2010).

To summarise, in the cued generation task, participants avoid generating a response

that had been part of the cue sequence. This finding was independent of the type of training

material, and it occurred even for the no-learning grooup, suggesting that it is a

training-independent response tendency (i.e., a bias against generating locations present in

the cue segment).

The findings further suggest that, in the permuted condition, this response strategy

interacted with cue properties to influence generation performance. Here, cue properties vary

as a function of the frequency manipulation in the permuted condition: Frequent locations

are more likely to be included in the cue, and are therefore more likely to be subject to the
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avoidance bias; this can explain the reduction, in the permuted condition, of high-frequency

responses in the cued as compared to the free generation task.

Finally, the cue-avoidance bias differed across PD instructions: cued responses were

generated less frequently under inclusion than under exclusion instructions. Interestingly,

this difference emerged only in the second generation block, suggesting that the cued

generation task allowed participants to acquire a strategy of selectively generating more cue

locations under exclusion instructions: If participants perceived the learning material as

random, they will aim at generating a random sequence under inclusion instructions (i.e.,

generate a sequence similar to that in the learning phase); under exclusion instructions, they

will aim at generating a sequence that does not conform to their subjective notion of

randomness (i.e., generate a sequence that is as dissimilar as possible to that in the learning

phase). When generating subjectively random sequences, participants typically produce

more alternations and fewer repetitions than would be expected by chance (e.g., Boyer et al.,

2005). By attempting to deviate from this subjectively experienced randomness they then

generate more cue locations.

Taken together, the cued generation task was not only less sensitive to learning effects.

It also appears to induce – or interact unfavorably with – a bias to avoid recently generated

response locations. Both the below-chance generation of cue locations as well as its

modulation by PD instruction may distort findings and conclusions regarding the presence or

absence of explicit and implicit sequence knowledge.

Discussion

The present findings extend previous knowledge about the influence of

pre-experimental response biases, simple frequency information, task format, and their

interaction on performance in the generation task. First, it is known that zero-order

frequency information may affect generation performance (Reed & Johnson, 1994); here, we

show that this effect depends on the type of generation task. Second, it is known that, in
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cued generation, cues that carry information about the sequence may affect generation

performance (Q. Fu et al., 2010). We present first evidence that even in the absence of any

sequence information, cues may affect generation performance by way of their simple

frequency properties and in interaction with response tendencies. Third, it is known that

participants may be biased to avoid generating recent response locations (Boyer et al., 2005).

Here, we demonstrated that this bias may interact with properties of the learning material

(zero-order frequencies, proportion of reversals) and task format, and that it can differentially

affect inclusion and exclusion performance. These findings have important implications for

the validity of the process-dissociation procedure as applied to the generation task.

Process-dissociation results

The present study realized three different control conditions, using different types of

pseudo-random materials, in which participants could not learn any second-order regularity.

Implicit and explicit knowledge was assessed with the PD procedure, using two different

generation tasks. Despite the irregular learning materials, and independent of the type of

analysis, the results of a comparison between performance in the permuted and random

conditions in the free-generation task suggested the presence of implicit knowledge. Similarly,

independent of the type of analysis, the results also suggested the presence of explicit

knowledge under some conditions (i.e., due to the asymmetric generation of reversals under

inclusion versus exclusion instructions). Finally, the results erroneously underestimated

knowledge in some conditions: Although participants learned to distinguish between high-

and low-frequency locations, they expressed this knowledge in the free-generation condition

but did not express this knowledge in the cued-generation condition. These findings

illustrate that unwanted influences can affect generation performance and may thereby

artificially inflate or mask estimates of implicit and explicit knowledge.

Taken together, the findings suggest that there are several problems with the PD

approach in its application to investigating the processes underlying sequence learning when



DISTORTED PD ESTIMATES IN SEQUENCE LEARNING 28

effects of extra-experimental influences on performance cannot be excluded. In those cases,

baseline performance may differ in inclusion and exclusion instructions and/or across

experimental conditions. Under those circumstances, the ordinal PD approach is no longer

valid (Hirshman, 2004). 7 In other words, given the possible influence of response tendencies

and their interaction with properties of the material, we cannot draw conclusions about the

relative contribution of implicit and explicit knowledge by simply comparing inclusion and

exclusion performance, be it directly (e.g., I > E), across experimental conditions (e.g.,

EA > EB), or with a baseline (e.g., E > B). Instead, it is necessary to quantify the

unwanted extraneous influence and separate it from the experimental effects of interest. This

can be done by extending the basic PD design and model.

An extended PD model

In applications of the PD, exclusion performance is sometimes compared to an a-priori

chance level baseline. The present study has shown that the proportion of correctly

generated triplets may deviate from such an a-priori chance-level baseline, and may even

differ across inclusion and exclusion conditions, in the absence of both implicit and explicit

sequence knowledge. In other words, we found that response tendencies, alone or in

interaction with properties of the learning material, may affect generation performance, may

cause deviations from a-priori chance baselines, and may distort the PD model’s estimates of

implicit and explicit knowledge.

To accommodate this potential confound, first, it is necessary to use an empirical

baseline. One could extend the PD design and model, as applied to the generation task, by

adding a control condition along with separate response-tendency or nuisance parameters, as

has been done by Buchner and colleagues for the recollection task (Buchner et al., 1998,

1997). In the control condition, that is, in the absence of sequence knowledge, generation

performance will then reflect sequence-unspecific properties of the material as well as

response tendencies. In the experimental condition, these same influences may affect
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generation performance over and above the effects of learning higher-order sequence

information. The nuisance parameter can then be equated across the control and

experimental conditions, capture the unwanted influences, and separate them from the

effects of implicit and explicit knowledge. In this model, any differences in performance

between the control and experimental conditions will be reflected in estimates of implicit

and/or explicit knowledge. Second, the problem that response tendencies may differentially

affect inclusion and exclusion performance can be solved by using as separate baselines the

performance of a control group in the inclusion and exclusion conditions, and by introducing

one nuisance parameter for each condition. Such an extended model allows for the possibility

that response tendencies affect generation performance over and above explicit and implicit

knowledge. Similar extensions for capturing extraneous influences have been proposed and

demonstrated as necessary and useful in other domains to address similar response-tendency

issues (e.g., pre-experimental familiarity, Buchner et al., 1995; right-hand bias; Stahl &

Degner, 2007).

The extended model’s equations deviate from the original equations (see introduction)

by including nuisance parameters that account for baseline performance (along the lines

suggested by Buchner et al., 1995, 1997). Because baseline performance may be different

under inclusion and exclusion instructions, two different parameters Rinclusion and Rexclusion

are added to the model. The equations of the experimental conditions of the extended model

are: p(correct|inclusion, experimental) = C + (1−C) ∗A+ (1−C)(1−A) ∗Rinclusion, and

p(correct|exclusion, experimental) = (1− C) ∗ A+ (1− C)(1− A) ∗Rexclusion. For the

empirical control or baseline condition, it would be assumed that only extra-experimental or

nuisance factors affect generation performance: p(correct|inclusion, control) = Rinclusion,

and p(correct|exclusion, control) = Rexclusion.

To illustrate, we applied this model to the permuted and random conditions in the free

generation task. Recall that both traditional approaches suggested the presence of explicit

and implicit knowledge in the permuted group, as well as the presence of explicit knowledge
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in the random group. The extended model allows us to quantify the effect of training with

permuted material over a training phase with random material on controlled and automatic

processes. We used the random group as the empirical control condition; this is equivalent to

the assumption that whatever affects performance in the random group can be subsumed as

nuisance factors. Estimates of Rinclusion and Rexclusion therefore reflect generation

performance in the random group, Rinclusion = .251 and Rexclusion = .228. Differences

between the random and permuted condition are then reflected in the parameters for

controlled and automatic processes. Results of the extended model suggests that training

with permuted material affected the automatic process, A = .047,∆G2
(df=1) = 16.44, p < .001,

but did not affect the controlled process, C = .001,∆G2
(df=1) = 0.004, p = .95. The effect on

the automatic process – implicit knowledge – reflects the location frequency effect, and it is

consistent with the finding that participants responded faster to high-frequency than to

low-frequency locations during SRTT training. The extended model indicates the absence of

an effect on explicit knowledge. The nuisance parameters capture the difference between

inclusion and exclusion performance in both the random and permuted group that was

interpreted as evidence for explicit knowledge in both the ordinal PD approach as well as in

the original model equations.

Note that the levels of generation performance in the control condition can serve as

valid baselines – and the controlled and automatic parameters can be valid estimates – only

to the degree that the processes captured by the nuisance parameters are independent from

explicit and implicit knowledge processes. In other words, the extended model requires

additional assumptions, namely that the processes underlying the parameters C and A are

independent from the nuisance processes (e.g., guessing, response bias) that are reflected in

the new parameters Rinclusion and Rexclusion. These assumptions are as of yet untested, and

future research is needed to supply empirical evidence as to whether these new independence

assumptions are met.
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Free versus cued generation

In free generation, participants sometimes produce relatively sparse data, for instance,

by repeatedly generating a small subset of all possible transitions, thereby generating missing

data for the remaining transitions. With the cued generation task, researchers can control

the cues and thereby ensure that comparable (or at least considerable) numbers of

observations are obtained for each transition. This is an advantage especially when different

types of transitions and their properties are to be compared in a within-subject approach.

However, the present findings support previous warnings that the cued generation task

must be treated with caution because the choice of cues may influence generation

performance (Q. Fu et al., 2010; Jiménez & Vázquez, 2005). In addition to previous findings

regarding informative cues, the present study provides an additional argument against the

cued generation task: The tendency to avoid generating locations that were presented as

cues may systematically bias generation performance, and may erroneously suggest the

presence of both implicit and explicit knowledge.

In light of these problems, we currently do not see an empirical way of obtaining an

equal number of observations for each transition in the generation task. This could imply

that attempts of modeling individual transitions as a within-participant factor will face

additional challenges. One way of avoiding artifacts resulting from a limited and biased

selection of generated transitions is to use adequate weighting procedures. For instance,

researchers could compute correct-generation rates for each of the cells in the transition

matrix and estimate participants’ mean proportion of correctly generated transitions as a

weighted average.

Limitations and open questions

We briefly sketch open research questions posed by the additional independence

assumptions, discuss the current development of hierarchical multinomial modeling

techniques, and note the potential influence of additional unknown factors affecting
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performance in the generation task.

On the independence assumptions underlying the extended model. As

mentioned above, the extended PD model assumes that response tendencies as modelled by

Rinclusion and Rexclusion are independent of controlled and automatic processes. If this

assumption is violated, parameter estimates are no longer valid measures of the underlying

psychological processes. This possiblity deserves to be taken seriously; in other domains,

empirical violations of independence between controlled and automatic processes have been

obtained (e.g., Rouder et al., 2008). The open question is whether response tendencies can

be affected by the same properties of the learning material that may also affect implicit and

explicit learning. There are some findings in the literature that at least suggest such an

interaction may well be possible. For instance, participants tended to show lag effects

(reflecting negative recency) in a permuted condition but not in a random condition (Boyer

et al., 2005). Here, the tendency to avoid generating recent locations interacted with

properties of the learning material. Perhaps more critically, the present results suggest that

in the permuted condition, the bias against generating cued locations was reduced whereas

implicit knowledge was enhanced (i.e., participants learned about the frequency with which

certain response locations occurred during training). If the response bias is reduced in a

condition with greater implicit knowledge, then the response bias estimates (i.e., the R

parameters) obtained from the control condition (where implicit knowledge is lower or

entirely absent) will tend to overestimate the response bias in that condition. The present

finding may reflect effects of other factors, but if such an interaction pattern between

response tendency and implicit knowledge can be substantiated, it would constitute evidence

against the independence assumption. In turn, this would require further elaborating and

refining the extended PD paradigm and model.

Data aggregation and hierarchical modeling. In our application of the PD

model, we aggregated the data across participants, as this has been the standard procedure

in common applications of PD and our aim was to illustrate potential problems with such
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applications. Our results demonstrate that the PD procedure, as commonly applied, yields

erroneous conclusions supporting the presence of implicit and/or explicit knowledge, even in

the absence of such knowledge. Note that such erroneous conclusions about the presence of

an influence on parameters are less likely when, instead of aggregating, individual data are

analyzed using hierarchical models. This is because data aggregation assumes parameter

homogeneity across participants, which is likely to be violated in most cases. As a

consequence of aggregation in the presence of heterogeneity, confidence intervals can be

underestimated, and nominal statistical error levels can be violated by statistical tests. 8

This problem does not arise if hierarchical modeling techniques are used (Klauer, 2006,

2010; e.g., Rouder et al., 2008) that account for the heterogeneity across participants (and

items) in their estimates of the parameters’ variability. Hierarchical models often draw a

more realistic picture of the variability of parameter estimates. In all cases in which

parameters must be assumed to vary across participants, they should be preferred to the

traditional approach of data aggregation. 9

Characteristics of response tendencies. In the present study, we obtained

evidence that participants may use two types of response tendencies: First, they generated

fewer reversals than expected by chance. Second, in the cued generation task, they avoided

generating responses that were part of the cue segments. It is unclear whether these patterns

reflect the same bias (e.g., based on subjective notions of randomness) or whether they

reflect different response tendencies, and whether they reflect consciously applied strategies

or rather more implicit trends. In addition, results obtained with the extended model

suggested that, even in the absence of both implicit and explicit knowledge and after

controlling for the identified response tendencies, there are other unknown factors that allow

participants to perform better than chance, and even better under inclusion than under

exclusion conditions. Future research should address these questions in order to better

understand their potential for affecting generation performance.
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Conclusion

Broadly speaking, the process-dissociation approach is to create two (or more)

experimental conditions within a given experimental paradigm so that there is overlap with

regard to most but not all of the psychological processes that are relevant for performance.

Combined with measurement models such as the PD equations or more complex multinomial

models, this general approach has been extremely valuable and has been fruitful in a wide

variety of research areas and experimental paradigms (Erdfelder et al., 2009; Yonelinas &

Jacoby, 2012). Whereas a simple and elegant design is generally preferable, the present

findings suggest that the application of process-dissociation methodology to the generation

task may require more differentiation of experimental design and measurement model.
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Footnotes

1 Note that the E > B pattern could not be replicated in other studies (Norman, Price,

& Duff, 2006; Wilkinson & Shanks, 2004) that, as a baseline, compared generation

performance with that for a control sequence instead of an a-priori fixed value.
2 For all our analyses, we used R (3.2.1, R Core Team, 2015) and the R-packages ibdreg

(0.2.5, Sinnwell & Schaid, 2013), knitr (1.10.5, Xie, 2013), papaja (0.1.0.9054, Aust & Barth,

2015), and rmarkdown (0.7, Allaire et al., 2015).
3 Because we only used pseudo-random sequences in this study, we defined that, given

the last two locations, the location that was most frequently presented after these two

locations during training as being the ‘correct’ response. For the no-learning condition,

correct responses were computed on the basis of sequences identical to those used in the

random group.
4 Restricting parameters to be equal across generation task (free vs. cued) harmed

goodness of fit, ∆G2
(df=6) = 68.14, p < .001; therefore, the amount of controlled and/or

automatic processes must be assumed to differ across tasks. Similarly, parameters could not

be equated across materials (no-learning, permuted, random), ∆G2
(df=8) = 81.59, p < .001,

implying effects of material.
5 All other information from their empirical distribution of response location

frequencies as well as any order information that may be present in participants’ generation

responses was discarded: A high-frequency (low-frequency) response location was simulated

with the probability given by the participant’s rate of actually generating a high-frequency

(low-frequency) response in the generation task; within the set of high-frequency

(low-frequency) locations, each was generated with equal probability. Datasets were

simulated by drawing responses from this distribution (with replacement, but with the

constraints that no direct repetitions were allowed).
6 This data pattern remained even after excluding reversals: Analysing only the first

block, only the main effect of material trended to be significant, F(2, 86) = 2.70, p = .073,
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η2
G = .059. Analysing only the second block revealed a main effect of PD instruction, F(1,

86) = 6.63, p = .012, η2
G = .072.

7 The ordinal PD approach assumes that baseline performance does not differ across

conditions or tasks (see Hirshman, 2004, p.559, section ‘Comparison of the Current

Approach and the Process-Dissociation Procedure’ and Footnote 8). Such baseline

differences may arise from different guessing or response bias, and they invalidate the

conclusions that can be drawn from the comparison of performance in conditions. This is

because the performance differences between conditions or tasks that are used to draw

conclusions about differences in automatic and/or controlled processes may instead reflect

baseline differences due to guessing or response bias.
8 We applied the hierarchical Bayesian PD model proposed by Rouder et al. (2008) to

the present data in order to account for person and item variability. The resulting parameter

estimates are available in the supplemental material that can be obtained from

https://github.com/methexp/pdl1. The results corroborated the findings obtained with the

traditional analyses reported above (i.e., C > 0, A > .2, and the ordering of A estimates

across conditions).
9 The use and adoption of hierarchical modeling approaches is currently limited by the

availability of general-purpose software (but see, e.g., Matzke, Dolan, Batchelder, &

Wagenmakers, 2013; Stahl & Klauer, 2007).

https://github.com/methexp/pdl1
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Appendix A

Proportions of correctly generated triplets

Inclusion Exclusion

Material Generation task Order M 95% CI M 95% CI

No-learning Free Inclusion first .23 [.20, .27] .21 [.18, .25]

No-learning Free Exclusion first .22 [.17, .27] .24 [.19, .30]

No-learning Cued Inclusion first .22 [.17, .27] .22 [.17, .28]

No-learning Cued Exclusion first .28 [.22, .34] .25 [.21, .28]

Permuted Free Inclusion first .29 [.26, .32] .23 [.18, .28]

Permuted Free Exclusion first .27 [.22, .31] .25 [.20, .29]

Permuted Cued Inclusion first .24 [.20, .28] .21 [.17, .25]

Permuted Cued Exclusion first .19 [.13, .25] .20 [.16, .23]

Random Free Inclusion first .23 [.20, .25] .20 [.15, .26]

Random Free Exclusion first .21 [.18, .25] .18 [.15, .21]

Random Cued Inclusion first .23 [.19, .28] .24 [.18, .29]

Random Cued Exclusion first .23 [.20, .26] .23 [.19, .26]

Note. CI = Confidence intervals
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Appendix B

Estimates of model parameters before or after reversals were removed

Full dataset After excluding reversals

Material Generation task A C A C

No-learning Free .23 [ .22, .24] .00 [-.02, .02] .24 [ .23, .26] .00 [-.02, .02]

No-learning Cued .24 [ .23, .25] .02 [ .00, .04] .27 [ .26, .28] .00 [-.02, .02]

Permuted Free .25 [ .24, .26] .04 [ .02, .06] .27 [ .26, .28] .03 [ .01, .06]

Permuted Cued .21 [ .20, .22] .01 [-.01, .03] .24 [ .23, .25] .00 [-.02, .02]

Random Free .20 [ .19, .21] .03 [ .01, .05] .23 [ .22, .24] .02 [ .00, .05]

Random Cued .23 [ .22, .24] .00 [-.02, .02] .26 [ .25, .27] .00 [-.02, .02]

Note. 95% confidence intervals are in parentheses.
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Appendix C

Category counts

Inclusion Exclusion

Material Generation task Correct Incorrect Correct Incorrect

Full dataset

No-learning Free 851 2894 851 2875

No-learning Cued 886 2626 825 2675

Permuted Free 881 2285 755 2427

Permuted Cued 723 2584 673 2621

Random Free 777 2731 669 2824

Random Cued 879 2916 888 2914

After excluding reversals

No-learning Free 851 2671 851 2605

No-learning Cued 886 2452 825 2233

Permuted Free 881 2101 755 2127

Permuted Cued 723 2306 673 2112

Random Free 777 2360 669 2324

Random Cued 879 2642 888 2434
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Figure 1 . Left: Mean reaction times for permuted (solid line) and random material (dashed

line). Right: Mean reaction times for permuted material, split by high-frequency (filled

circles) vs. low-frequency locations (open circles). Error bars represent 95% within-subjects

CIs.
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Figure 2 . Proportions of correctly generated triplets during PD generation task (chance level

= .2). Error bars represent 95% CIs.
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Figure 3 . Proportions of reversals produced in generation task (chance level = .2). Error

bars represent 95% CIs.
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Figure 4 . Proportions of correctly generated triplets during PD generation task after excluding

reversals (chance level = .25). Error bars represent 95% CIs.
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Figure 5 . Proportion of high-frequency locations during generation in the permuted material

condition (chance level = .33). Error bars represent 95% CIs.
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Figure 6 . Proportions of locations generated in the cued generation task that were presented

as a cue on their respective trial, separately for the first and the second generation block

(chance level = .6). Error bars represent 95% CIs.
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