
It is well-known that standard computer keyboards are
suboptimal for the recoding of response latencies because
keypresses are not immediately forwarded to the com-
puter’s central processing unit (CPU); rather, all keyboard
events occurring within a certain time frame (usually
10–30 msec) are stored in a buffer within the keyboard
before the contents of that buffer are forwarded to the
computer’s CPU for processing. Due to this buffering, a
variable delay is added to each response latency that de-
pends on the occurrence of the response within the buffer
window, and as a result, increases the error variance of
the response latency measure (see, e.g., Crosbie, 1990;
Plant, Hammond, & Turner, 2004; Segalowitz & Graves,
1990). Because external response pads do not contain a
buffer, they are the better choice for recording response
latencies, especially whenever small effects are expected,
or when intervals between two consecutive responses are
measured (Segalowitz & Graves, 1990). A number of dif-
ferent response devices are available, and they usually
connect to the computer’s USB, serial, or parallel port.
Most of the commercially available response boxes ac-
tively preprocess the incoming signal, which is necessary
for devices that connect to the USB or the serial port, and
they therefore need an external power supply. In our view,
the most straightforward method of recording keypresses
is via the parallel port,1 because no preprocessing of sig-
nals in the response device is necessary, the timing is most
accurate (Beringer, 1992), and a parallel port device can
be built with a minimum of electronics. We feel that the
experimental setup in a lab should be as lean and simple

as possible, and for this reason, we provide a description
of inexpensive, easy-to-build, and nevertheless highly
reliable response pads that can be plugged directly into
the parallel port and do not need any additional devices
for power supply or preprocessing. In the following, we
give a step-by-step guide on how to build your own re-
sponse pads for the parallel port (see Morris, 1992, for
a description of a serial port device). We further address
the timing accuracy of the device, and describe how the
device’s signals can be registered as responses by standard
experimental software.

Hardware: The Response Pads
For a response device, the central point is the mechanics

of the keys or buttons; if buttons are not working properly,
this will obviously cancel out all advantages of the direct
connection to the parallel port. To solve this problem, we
suggest using the buttons of standard computer mice. For
experiments that require responding with two hands, two
mice can be used simultaneously. With such a solution, up
to six different buttons can be used for an experimental
setup.

First, we want to give a word of warning: Wiring a
parallel port device the wrong way can, theoretically,
cause damage to important parts of your computer (e.g.,
the mainboard). Therefore, some care is recommended
in building the devices. In the following, we explain in a
step-by-step guide to how to proceed.

Step 1: Choosing the response device. Before con-
structing the hardware for external response devices, the

	 797	 Copyright 2007 Psychonomic Society, Inc.

How to make your own response boxes:
A step-by-step guide for the construction of

reliable and inexpensive parallel-port
response pads from computer mice

Andreas Voss, Rainer Leonhart, and Christoph Stahl
Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

Psychological research is based in large parts on response latencies, which are often registered by keypresses
on a standard computer keyboard. Recording response latencies with a standard keyboard is problematic because
keypresses are buffered within the keyboard hardware before they are signaled to the computer, adding error
variance to the recorded latencies. This can be circumvented by using external response pads connected to the
computer’s parallel port. In this article, we describe how to build inexpensive, reliable, and easy-to-use response
pads with six keys from two standard computer mice that can be connected to the PC’s parallel port. We also
address the problem of recording data from the parallel port with different software packages under Microsoft’s
Windows XP.

Behavior Research Methods
2007, 39 (4), 797-801

A. Voss, voss@psychologie.uni-freiburg.de

798     Voss, Leonhart, and Stahl

first decisions that have to be made are how many buttons
will be needed and how the buttons should be assigned
to participants’ hands. In this article, we will provide an
example of a device with three buttons for each hand, built
from two three-button computer mice. This six-button so-
lution should be sufficient for a wide range of psycho-
logical experiments. However, using the input mode of
a bidirectional parallel port, it is possible to attach up to
eight buttons to one parallel port. Thus, any response de-
vice with up to eight buttons can be attached to the parallel
port the way we describe it below. We decided to use sim-
ple old-fashioned three-button serial-port mice without a
scrolling wheel or laser technology because they are cheap
and have a simple electronic architecture.

Step 2: Removing the electronics. From the mice,
only the mechanics of the button switches are needed.
When you open the mice, you will probably find the
switches soldered to the circuit boards. The boards should
remain intact to keep the switches where they are. All
other electronics have to be removed or disconnected from
the switches by cutting off the conducting paths leading
to the switches.

Step 3: Connecting the switches. Next, the switches
should be connected with a new cable to a male-type
D-SUB-25 plug for the parallel port. To connect your PC
with the response pads, two cables are required in order
to connect the mice to the parallel port plug. Each cable
must contain four wires: one wire for the signal from each
switch, and an additional wire for the ground. Figure 1
shows how the six switches of both mice are connected to
the pins of the plug.

Some important points should be noted: First, each
switch connects one pin of the data byte of the parallel
port with the ground. This logic works only for ports that
set 5 volts to all pins of the data byte (Pins 2–8), once
the port is switched to input mode (see below). Unfortu-
nately, parallel ports are not completely standardized, and

different protocols are used (e.g., ECP or EPP; Axelson,
1997).2 Some ports have an inverted logic in input mode:
For these ports, by default there is no current at the eight
data lines, and they have to be connected to a power source
to record a signal. With the program pp_monitor avail-
able on our Web page (www.psychologie.uni-freiburg.de/
Members/voss/research/response-pads), you can easily
check whether this is the case for your parallel port. We
will describe a solution for this problem below (Step 4).

Second, we recommend not short-circuiting the pins to
the ground directly, because high amperages may occur.
Rather, we suggest inserting a small resistor (100 Ω) be-
tween the data pin and the ground pin, as illustrated in
Figure 1. Third, in our experience it is most convenient
to solder the resistors directly to the plug so that they are
enclosed within the plug’s coverage, rather than connect-
ing them to the switches within the mice.

Step 4: Dealing with inverted parallel ports. For
parallel ports with an inverted logic—that is, for ports
in which all pins of the data byte are set to zero when
switched to input mode—one needs a different wiring of
the key pads: In this case, the data pins have to be con-
nected not to the ground but to a 5-volt source to record a
signal. Fortunately, the port itself provides such a voltage,
so no external power supply is needed. For parallel ports
that show this effect, the switches are required to connect
the data pins directly to a 5-volt pin. This can be achieved
by connecting to Pin 1 instead of Pin 18 that is used in Fig-
ure 1. Alternatively, an adapter can be plugged in between
the computer and the response pads constructed according
to Figure 1. We prefer this procedure, because it provides
a flexible solution and allows usage of the response pads
on both types of parallel ports. Figure 2 provides a sche-
matic diagram for the adapter. The central feature of the
adapter is that the ground pin of the response pads (Pin 18
at the female plug; K1 in Figure 2) is connected to Pin 1
of the computer’s parallel port (the male plug; K2 in Fig-

Figure 1. Circuit diagram for the response pads with six buttons. K1 is
a D-SUB-25 male type plug for the parallel port. S1 to S6 are the buttons
of the response device. R1 to R6 are 100-Ω resistors. If eight buttons are
needed, it is possible to use Pins 8 and 9 likewise.

Response Pads for the Parallel Port     799

ure 2), which we use as the power supply. In addition, we
recommend connecting all used data pins with the ground
with a high resistor (1 kΩ). This guarantees that after a
switch is opened, the voltage goes down again immedi-
ately. Again, the necessary resistor can easily be applied
within the cover of one of the plugs, so this adapter looks
like a simple cable with two D-SUB-25 plugs.

Reliability of the Response Pads
To test the reliability of our device, two experiments

were conducted that address the accuracy with which the
latencies of buttonpress responses are registered, as well
as the potential problem of rebouncing effects.

Experiment 1: Timing accuracy. To check the tim-
ing accuracy of our devices, we replaced the mechanic
switch in one of our response pads with a phototransis-
tor (MCT2E), which works like an electronic switch.
The phototransistor was then connected to an external
high-accuracy clock signal generator. On a Windows XP
computer with a dual-core Pentium 4 2.8-GHz processor,
which was connected to the response pads, the offsets of
1,000 consecutive signals were recorded using the Win-
dows high-performance timer. The offsets had a range of
0.129 msec and a standard deviation of 0.028 msec. These
results indicate that the parallel-port devices work with
excellent timing accuracy.

Experiment 2: Rebouncing effects. Rebouncing can
occur when a mechanic switch is closed or opened: When
both contacts are very close, the circuit might oscillate be-
tween a closed and an opened state for a very brief period
before the final state is reached. If, during that brief inter-
val, the state of the switch is assessed repeatedly, this re-
bouncing may be interpreted as multiple signals, when in
fact only a single buttonpress was performed. The extent
of rebouncing depends on the mechanics of the switch.

In most experimental settings, rebouncing is not prob-
lematic, since only the first response in a given trial is usu-
ally registered. However, if multiple consecutive responses
with the same button are recorded, rebouncing might cause

a single response to be registered as several. Because re-
bouncing occurs at a very short time frame, this poten-
tial problem can be avoided if the state of the response
pad is queried only once every millisecond—a common
sampling rate for experimental software and computer pro-
gramming libraries. To demonstrate this empirically, one
hundred manual responses were recorded with one of our
devices, and the state of the buttons was registered using a
timer from a standard C library with millisecond accuracy.
In none of the 200 button events (100 rising edges and
100 falling edges) did rebouncing occur—that is, there was
always an immediate change from 0 to 1 (or vice versa),
without an oscillation between both values.

Whereas we believe that the devices we describe here
are of high quality, please note that the quality of self-made
response pads may not be as good as that of commercially
available devices, because it depends on the mechanic qual-
ity of the switches, and the results obtained in Experiment 2
might thus not hold for different mice. We therefore rec-
ommend carefully evaluating all self-made response boxes
before they are used for research. However, the results from
Experiment 1 regarding timing accuracy are independent of
the type of switch used and can thus be generalized.

Initializing the Parallel Port
Before the response pads can be used on the parallel

port, it has to be set to bidirectional mode, and the data
byte has to be set to input mode. In addition, we strongly
advise removing any other device driver (e.g., a printer
driver) that might access the parallel port and thus inter-
fere with data recording.

Changing your port to ECP/EPP. Nowadays, almost
all parallel ports are bidirectional—that is, the data byte
can be used for input as well as for output. If you have any
trouble with the response pads, you should check in your
computer’s BIOS whether your port is configured as ECP/
EPP (see notes 1 and 2).

Switching the data byte to input mode. By default,
the port is configured for output on the data byte. Because

Figure 2. Circuit diagram for an adapter for inverse parallel ports. K1 is a D-SUB-25
female type plug (which can be connected to K1 in Figure 1), and K2 is again a D-
SUB-25 male type plug for the parallel port. R1 to R6 are 1-kΩ resistors.

800     Voss, Leonhart, and Stahl

we want to read data, the port has to be switched to input
mode before the response pads can be used. To prepare
the port for input, Bit 5 of the status byte of the parallel
port has to be set to “high.” After this has been done, the
parallel port is switched to input mode, and you can check
whether your port sets the data bits low or high (see Hard-
ware section). You can do this by measuring whether or
not there is voltage between the data pins (Pins 2–9) and
the ground (e.g., Pin 18). Alternatively, you can use the
program pp_input from our Web page to check whether
the bits are set or not.

Software: Addressing the Parallel Port
Under Windows XP

To illustrate how responses can be registered from the
response pads, we provide examples how this can be done
with some of the most commonly used experimental soft-
ware packages. For researchers with programming experi-
ence, we also demonstrate how this can be achieved with
C code.

Registering Responses With Experimental
Software Packages

After initializing the parallel port as described above,
experimental software packages such as Inquisit, E-Prime,
or DirectRT can register the press of a button on the re-
sponse pads as easily as they can register keyboard re-
sponses. We provide a brief description how the port
inquiry can be accomplished with each of the three pack-
ages (for implementations of these examples, visit www
.psychologie.uni-freiburg.de/Members/voss/research/
response-pads; for a review of the software packages, see
Stahl, 2006).

Inquisit. By default, Inquisit (Millisecond Software,
2004) reads input from the status byte of the parallel port.
However, with the present response pads, data needs to be
read from the data byte. To accomplish this, the memory
address of the parallel port has to be adjusted by minus 1.
For example, the first parallel port, LPT1, is by default
mapped to 0x0378. In this case, the data byte is at 0x0378,
and the status byte is at 0x0379. Thus, Inquisit would read
from 0x0379. Pointing the address of the LPT1 port to
0x0377 causes Inquisit to read from byte 0x0378, which
is the correct address for reading response pad responses.
In addition to specifying the memory address, byte codes
have to be specified as valid responses that correspond
to the valid buttonpresses. Otherwise, Inquisit would not
wait for a buttonpress but would immediately take the de-
fault byte value for a response. For example, to accept
responses from the left button of the right-hand mouse
and the right button of the left-hand mouse (i.e., responses
from both index fingers), specify 196 and 200 as valid
response codes. To avoid Inquisit interpreting a single,
longer buttonpress as multiple responses, use a “pretrial
signal” command to instruct the software to wait for the
default value before initiating a trial.

DirectRT. With DirectRT (Empirisoft, 2004), the address
of the data byte can be specified in the response field of a
trial description. In a given trial, to switch from keyboard

to response pad, replace the keyboard response codes with
those for the response pad, and add the decimal data port
address in parentheses (e.g., “rt:196,200(888)” for the two
index-finger buttons). To initialize the port, a single signal
has to be sent through the port before responses can be reg-
istered. A sample experiment is provided with the package,
illustrating both initialization and registering responses.

E-Prime. In E-Prime 1.1 (Psychology Software Tools,
2002), upon addition of the port device (available from
the Edit/Experiment/Devices menu), the address of the
data byte can be edited in the Properties menu of the port
device. The port device can now be specified as the input
device for experimental trials. Responses are coded and
logged by the number of the button, counted from right to
left, across both mouse (i.e., from “1” for the right button
of the right-hand mouse to “6” for the left button of the
left-hand mouse). Using these codes, valid and correct
responses can optionally be specified.

Accessing the Parallel Port With a C Program
If you are programming your own experiment using

Windows XP, you will need a software interface to ac-
cess the parallel port (i.e., direct access to the parallel port
is prohibited by the operating system). We recommend
using the inpout32.dll, which is available on the Inter-
net (e.g., at www.logix4u.net/inpout32.htm).3 With this
interface, you can address the port from any contempo-
rary programming environment (e.g., C, C++, or Delphi).
Here, we provide examples for the C language. Please also
check our homepage (www.psychologie.uni-freiburg.de/
Members/voss/research/response-pads) for some exam-
ples in C, including the source code.

Switching the data byte to input mode. Instead of
using the program we provide, parallel-port initialization
can be easily done with a few lines of C code:

#define kPP_BASE 0x378
#define kPP_STATUS kPP_BASE + 2
#define ONLY_BIT(b) ((2 < < b)/2)
_int16 x = Inp32(KPP_STATUS);
x = x | ONLY_BIT(5);
Out32(kPP_STATUS, x)

where 378 is the hexadecimal port address4 and Inp32 and
Out32 are commands provided by inpout32.dll.5

Recording responses. When the response pad is con-
nected to the parallel port, a buttonpress is directly mapped
onto one of Bits 1–6 of the data byte. You can check for a
buttonpress with the following C code:

if ((Inp32(kPP_BASE) & ONLY_
BIT(button)) = = 0) {
	 /* Bit is low */
} else {
	 /* Bit is high */
}

Again, 378 is the port address, and button is the number of
the button in question, counting from 0 (for Pin 1) to 5 (for
Pin 6). On most ports, a low bit will represent a button-
press. If your data bits are high without a buttonpress, you

Response Pads for the Parallel Port     801

will need the adapter described above, and buttonpresses
are indicated by a low bit.

Conclusions
In this article, we describe external response pads to

be connected to the parallel port that are superior in tim-
ing accuracy to standard computer keyboards. Accuracy is
higher with our response pads because they do not make
use of buffering that adds error variance to latencies re-
corded from a standard computer keyboard. Another ad-
vantage is the superior simplicity of a device with only a
small number of keys, rendering it less likely that partici-
pants slip to a wrong key or are unsure which keys they
have to use (Crosbie, 1990).

If one wants to record responses with a computer
mouse, it is obviously possible to use a standard mouse
connected to the serial port or the USB port. However, in
this case similar timing accuracy problems occur as for the
standard keyboard (Beringer, 1992).6 An additional ad-
vantage of the response pads we describe is the possibility
of combining two mice for two-handed responses.

Creating external response pads from computer mice
has several advantages: First, the mechanics of the mouse
buttons are usually of high quality and are very reliable.
Second, materials for these response pads are very inex-
pensive (about €15 for two mice, cable, plugs, and several
resistors). Third, they do not need an external power sup-
ply. Fourth, the construction process is simple: With some
practice, one pair of response pads can be constructed in
less than 1 h. Fifth, the devices are quite ergonomic and
handy to use. Last but not least, they have proven to pro-
vide excellent reliability. For these reasons we are con-
vinced that for registering response latencies with high
accuracy, these self-made response pads are a good alter-
native to a standard keyboard as well as to commercially
available external response devices.

Author Note

The research reported in this article was supported by Grant Kl
614/31‑1 from the Deutsche Forschungsgemeinschaft to Karl Christoph
Klauer. Correspondence concerning this article should be addressed
to A. Voss, University of Freiburg, Department of Psychology, 79085
Freiburg, Germany (e-mail: voss@psychologie.uni-freiburg.de).

References

Axelson, J. (1997). Parallel port complete: Programming, interfac-

ing, and using the PC’s parallel printer port. Madison, WI: Lakeview
Research.

Beringer, J. (1992). Timing accuracy of mouse response registration on
the IBM microcomputer family. Behavior Research Methods, Instru-
ments, & Computers, 24, 486-490.

Crosbie, J. (1990). The Microsoft mouse as a multipurpose response
device for the IBM PC/XT/AT. Behavior Research Methods, Instru-
ments, & Computers, 22, 305-316.

Empirisoft (2004). DirectRT (Version 2004.1.0.55) [Computer soft-
ware]. New York: Author.

Millisecond Software (2004). Inquisit (Version 2.0.41230) [Com-
puter software]. Seattle, WA: Author.

Morris, C. C. (1992). Using the IBM-compatible microcomputer’s se-
rial port as an input–output interface. Behavior Research Methods,
Instruments, & Computers, 24, 456-460.

Plant, R. R., Hammond, M., & Turner, G. (2004). Self-validating
presentation and response timing in cognitive paradigms: How and
why? Behavior Research Methods, Instruments, & Computers, 36,
291-303.

Plant, R. R., Hammond, N., & Whitehouse, T. (2003). Behavior Re-
search Methods, Instruments, & Computers, 35, 276-284.

Psychology Software Tools (2002). E-Prime (Version 1.1) [Com-
puter software]. Pittsburgh, PA: Author.

Segalowitz, S. J., & Graves, R. E. (1990). Suitability of the IBM XT,
AT, and PS/2 keyboard, mouse, and game port as response devices in
reaction time paradigms. Behavior Research Methods, Instruments, &
Computers, 22, 283-289.

Stahl, C. (2006). Software for generating psychological experiments.
Experimental Psychology, 53, 218-232.

Notes

1. Further information about parallel ports is provided by Axelson
(1997). Also, it might be informative to check the Internet.

2. The enhanced parallel port (EPP) is a half-duplex bidirectional
interface designed to allow a transmission of large amounts of data to
the host. The extended capability port (ECP) is a half-duplex bidirec-
tional interface, too, but it also allows data compression (run-length
encoding).

3. Please note that Inpout32 works with a 32-bit architecture, whereas
the original inp() routines provided in C work with 16 bits only. For the
64-bit version of Windows, a new port driver will be needed.

4. The default port address for LPT1 is 378, and 278 is the default ad-
dress for LPT2. In laptop computers, other addresses might be used. You
can check the correct address in the BIOS settings.

5. If you are using the adapter described in the Hardware section,
you have to be careful not to change the first bit of the status byte (the
“strobe”) from 0 to 1, because this would turn off the power on Pin 1,
which is used as the power supply.

6. Although the timing accuracy of some PS/2 mice seems to be excel-
lent as well, accuracy may vary substantially even between mice from the
same series (see Plant, Hammond, & Whitehouse, 2003).

(Manuscript received August 2, 2006;
revision accepted for publication December 8, 2006.)

