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Abstract. The Extrinsic Affective Simon Task (EAST; De Houwer, 2003) has been introduced as an indirect measure of automatic
activation of valence. EAST effects provide nonrelative valence measures of single stimuli compared to relative measures (e.g., Implicit
Association Test) that imply a comparison between two stimuli or concepts. However, EAST effects can be biased by response tendencies.
A multinomial process dissociation model of EAST performance is proposed and successfully validated in four experiments. Its param-
eters provide pure and unbiased measures of automatic valence activation, controlled processing of task-relevant features, and response
tendency. A first application of latent-class hierarchical multinomial models reveals a significant amount of parameter heterogeneity
resulting from interindividual differences in accuracy motivation.
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Introduction

When we encounter an object, its valence can be activated
and processed automatically and can have – sometimes un-
intended – behavioral consequences (e.g., Zajonc, 1980).
Recently, a number of research tools has been developed
that capture such automatic activation of stimulus valence,
for example the Affective Priming Paradigm (Fazio, San-
bonmatsu, Powell, & Kardes, 1986), affective versions of
the Implicit Association Test (IAT; Greenwald, McGhee,
& Schwartz, 1998) or affective variants of the Simon task
(De Houwer, Crombez, Baeyens, & Herman, 2001; De
Houwer & Eelen, 1998; Voss, Rothermund, & Wentura,
2003). Likewise, the Extrinsic Affective Simon Task
(EAST; De Houwer, 2003) was put forward as such a mea-
sure of the valence of stimuli.

The Extrinsic Affective Simon Task

Originally, the EAST was introduced as a modified variant
of the IAT (Greenwald et al., 1998), which has already been
widely used as an indirect measure of the valence of stimuli
or concepts but suffers from some limitations. For instance,
IAT effects always imply a comparison of two concepts.
Such relative IAT effects can vary remarkably depending
on which contrast category is used (e.g., Karpinski, 2004).
Another potential disadvantage of the IAT effect as a mea-
sure of valence is that it is based on a comparison of per-
formance in two different tasks. This makes it vulnerable

for a distortion due to different strategies used in the two
tasks (e.g., Brendl, Markman, & Messner, 2001; Rother-
mund & Wentura, 2001, 2004). The EAST was designed
to overcome these limitations: It is capable of assessing the
nonrelative valence of single concepts, and is less vulner-
able to distortion because EAST effects are computed from
performance in one single task.

The procedure of the EAST is directly derived from the
affective Simon task (De Houwer & Eelen, 1998). In an
affective Simon task, participants are to respond to a series
of target stimuli by giving valent responses such as pro-
nouncing the words “good” or “bad.” The required re-
sponse depends on a stimulus feature that is unrelated to
valence (e.g., color). However, if stimuli vary in valence,
responses are typically faster and more accurate when stim-
ulus and required response are congruent with regard to
their valence (e.g., participants are to respond “good” to a
positive word), compared to trials in which their valence is
incongruent (e.g., participants are to respond “bad” to a
positive word). In an affective Simon task, the responses
(i.e., the words “good” and “bad”) possess intrinsic va-
lence. In contrast, in an EAST, responses are assumed to
acquire extrinsic valence by means of task instructions.
Participants again respond to a task-relevant feature other
than valence, such as the ink color of the target stimulus.
However, responses are given by pressing one of two re-
sponse keys that are arbitrarily assigned the labels “posi-
tive” and “negative.” To assure that these key-presses ac-
quire valence, a second set of valenced stimuli is intro-
duced (attribute stimuli), that have to be explicitly
evaluated. For example, a set of positive and negative at-
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tribute words printed in white ink (on a black screen) would
be presented intermixed with the colored target stimuli.
Participants would be instructed to press the positive key
for positive white words and for all green words and the
negative key for negative white words and all blue words.

As each target stimulus is presented at least once in each
color, positive and negative reactions have to be given to
the same stimulus; it thus serves as its own control. Conse-
quently, the valence of a single stimulus can be determined
by subtracting error rates (or response latencies) of trials
with positive required responses from those of trials with
negative required responses, resulting in a score with val-
ues larger than zero for positive and smaller than zero for
negative evaluations.

The EAST comes with an additional benefit, namely
that the underlying processes contributing to an EAST ef-
fect are much better understood than those operating in
the IAT (which are subject to a considerable amount of
debate; e.g., Brendl et al. 2001; De Houwer, 2001; Klauer
& Mierke, 2005; Mierke & Klauer, 2003; Rothermund &
Wentura, 2001, 2004). As a variant of the affective Simon
task, the EAST effect is based on the compatibility be-
tween valence of stimuli and required responses (De Hou-
wer & Eelen, 1998; De Houwer et al., 2001). Although
stimulus valence is a task-irrelevant feature, it is automat-
ically processed and causes an activation of the corre-
sponding response (i.e., the positive response is activated
upon presentation of a positive stimulus). Responding is
thus facilitated in trials where stimulus and response va-
lence are compatible, compared to trials in which both are
incompatible (Beckers, De Houwer, & Eelen, 2002). Ac-
cordingly, EAST effects can indicate automatic process-
ing of the task-irrelevant feature of stimulus valence.
However, responses in the EAST are not only driven by
automatic processing of stimulus valence, but also by the
controlled processing of response-relevant features (e.g.,
color) as well as by guessing (e.g., preferences for right-
hand responses). To obtain a pure measure of the valence
activation process, that process needs to be dissociated
from these additional processes that also contribute to
EAST task performance.

Dissociating Automatic and Controlled
Processes

At the core of cognitive psychology is the endeavor to
disentangle the underlying processes contributing to be-
havior. One way to address this problem is to postulate
and test a formal model of underlying cognitive processes.
Multinomial processing tree models are a successful fam-
ily of such models (for a review, see Batchelder & Riefer,
1999). For example, the process-dissociation procedure

put forward by Jacoby (1991) was the first attempt to dis-
sociate the contribution of conscious and unconscious
processes to memory outcomes within a single task. It
soon became obvious that the process-dissociation proce-
dure could benefit from a more complex modeling ap-
proach that also incorporated guessing as an additional
process that could potentially influence outcomes (e.g.,
Buchner, Erdfelder, & Vaterrodt-Plünnecke, 1995). In ad-
dition to their many successful applications to memory
phenomena, multinomial processing tree models have
also been applied to paradigms that are more central to
this article’s topic, for example priming paradigms, and
the IAT (Payne, 2001; Conrey, Sherman, Gawronski, Hu-
genberg, & Groom, 2005).

The ABC Model of EAST Performance

In the present article, we introduce the ABC model as a
new multinomial processing tree model for EAST accuracy
data. The model postulates that EAST task performance is
a combined result of three cognitive processes: Automatic
activation of valence (A), controlled processing of the task-
relevant feature (C), and guessing (B). The model’s param-
eters provide quantitative estimates of the contribution of
each of these processes to EAST performance.

When the task-irrelevant feature of stimulus valence is
processed involuntarily, an EAST effect based on stimulus
valence can result. In such cases, EAST effects reflect un-
intended interference from an automatic activation of stim-
ulus valence. The model posits that when stimulus valence
is automatically activated, it determines the response. This
automatic activation of valence is measured by the model’s
A parameter.

From a participant’s perspective, one is best advised to
concentrate on task-relevant stimulus features in order to
perform accurately. This controlled processing of the task-
relevant feature is captured by the model’s C parameter.1

Guessing processes come into play when neither the
task-relevant feature nor the automatic activation of va-
lence succeed in determining the response. Response bias-
es, for example, tendencies toward pressing the right-hand
or the positive key, can influence performance. Response
biases are captured by the model’s B parameter. By esti-
mating one single B parameter for all stimuli, the model
equations incorporate the assumption that those biases are
independent from stimulus valence.

Figure 1 illustrates how these processes are postulated
to interplay in determining EAST performance. Upon en-
countering a target stimulus, its valence can automatically
be activated and then determines the response (with prob-
ability A). If a congruent response is required, this leads to
a correct response; if an incongruent response is required,
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an incorrect response results. Given that the task-irrelevant
feature of stimulus valence is not automatically activated
(with probability 1 – A), controlled processing of the task-
relevant feature can determine the response with probabil-
ity (1 – A)C; in this case, a correct response results. With
probability (1 – A)(1 – C), neither automatic activation of
valence nor controlled processing of the task-relevant fea-
ture determine the response; instead, a response is selected
by guessing: With probability B, the positive key is chosen,
and with probability 1 – B, the negative key is chosen.

Before this model can be applied to analyze EAST data,
two requirements have to be met: First, it has to be estab-
lished that the model is identifiable and can fit EAST data.
Second, and most importantly, its parameters have to be
validated: It is to be shown that the separation of the pos-
tulated processes in an EAST is psychologically meaning-
ful and valid. For this purpose, validation experiments
were conducted in which each of the model’s parameters
was targeted by an experimental manipulation. The pa-
rameter values of a psychologically valid model are ex-
pected to respond to experimental manipulations as pre-
dicted from previous knowledge about the effects of those
manipulations on the processes in question. For the ABC
model, this means that the A parameter (and only the A
parameter) should respond to manipulations of stimulus
valence, that the B parameter (and only the B parameter)
should respond to response bias manipulations, and that
the C parameter (and only the C parameter) should re-
spond to manipulations affecting the processing of the
task-relevant features. The fit and the validity of the ABC
model for analyzing EAST data is demonstrated in four
experiments.

Experiment 1

The first study aimed at validating the A parameter of au-
tomatic valence activation and the C parameter of con-
trolled task processing in a standard EAST. We predicted
a double dissociation: Manipulations that affect the valence
of stimuli should be reflected only in changes in estimates
of the A parameter and should not affect the C parameter.
Manipulations that affect the controlled processing of the
task-relevant feature (color) should be reflected only in
changes in estimates of the C parameter and should have
no effect on the A parameter. The B parameter of response
bias should be affected by neither of those manipulations.

Three experimental conditions were realized. As a con-
trol condition, a standard EAST procedure was realized. A
set of positive and negative words served as attribute stim-
uli and another set of positive and negative words served
as target stimuli. As a task-relevant feature, target words
were presented in blue or green ink. Highly similar hues of
blue and green were used, such that the colors were not
easy to discriminate. In this condition, we predicted the A
parameter to capture the valence of stimuli, resulting in a
parameter estimate significantly different from zero.

In the dissimilar condition, more dissimilar hues of blue
and green were used. Thus, colors were easy to discrimi-
nate. Processing the task-relevant feature of ink color
should be easier if the to-be-discriminated colors are less
similar to each other than when they are very similar. This
manipulation should increase the probability that the task-
relevant feature of color determines participants’ respons-
es. We predicted that the value of the C parameter should
increase compared to the control condition.

Figure 1. The ABC model of EAST performance.
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A nonword condition was realized in which pronounce-
able nonwords (e.g., uwimor) served as target stimuli. No
automatic activation of valence should be observed for
nonwords. It was thus predicted that the A parameter should
not differ from zero in this condition. For data analysis pur-
poses, half of the nonwords were arbitrarily categorized as
“positive” or “negative.”

Method

Participants

Seventy-two Saarland University students participated.
Two participants’ data were incomplete due to computer
failure; data from three participants in the nonwords con-
dition were excluded because of performance at chance
level (error rates of .54, .56, and .48). The remaining sam-
ple consisted of 23 men and 44 women (ages 18 to 40, Mdn
= 24). There were 21 participants in the nonwords condi-
tion and 23 participants each in the control and dissimilar
conditions.

Materials

Two sets (A and B) of five positive and five negative words
were used (pleasantness norms were taken from Hager &
Hasselhorn, 1994). Positive words, (M = 12.81 on a scale
from –20 to +20) were rated as more pleasant than negative
words (M = –13.55), t(18) = 26.85, p < .001. No differences
in pleasantness ratings were observed between the positive
words of Set A and Set B (M = 11.85 and M = 13.76, re-
spectively), t(8) = 1.34, ns, or between the negative words
of Set A and Set B, (M = –14.68 and M = –12,41, respec-
tively), t(8) = 1.96, ns. Assignment of sets to target versus
attribute stimuli was balanced across conditions. Similarly,
two sets (A and B) of nonwords were used. Nonwords were
chosen for their neutrality according to pretests in which
they obtained valence ratings around the midpoint of a
scale from 1 (negative) to 7 (positive). No difference was
obtained in the valence ratings of both sets (M = 3.88 and
M = 3.88, respectively), t(8) = .07, ns.

Attribute stimuli were presented in white ink on a black
background; target stimuli were presented in blue and
green colors on a black background. In the control and non-
word conditions the RGB values of the blue and green col-
ors were, respectively, 0, 125, 150, and 0, 150, 125. In the
dissimilar condition, the RGB values of the blue and green
colors were, respectively, 31, 82, 235 and 56, 235, 31. All
word stimuli were presented in a sans serif font; letters were
8 mm of height.

Design

A 3 (Condition: control, nonword, dissimilar) × 2 (Stimulus
set: A vs. B) × 2 (Color assignment: blue-negative vs.
green-negative) × 2 (Valence: positive vs. negative) × 2
(Required response: positive vs. negative) design was im-
plemented with repeated measures on the last two factors.

Procedure

The experiment was conducted on laptop computers in dif-
ferent locations on campus. To ensure that participants
could discriminate the colors on the laptop screen, they
were first presented with sample patches of the respective
colors and instructed to adjust the screen to optimize dis-
criminability. Participants were instructed to respond with
a positive and a negative key to the valence of the words
printed in white ink, and to respond with the same keys to
the color of the words printed in blue and green ink. The
positive key [M] was to be pressed with the right index
finger, the negative key [C] was to be pressed with the left
index finger.

Because multinomial model analyses are based on accu-
racy data, we modified procedure and instructions to en-
courage speed over accuracy. Similar to a response dead-
line, stimuli were presented for 200 ms and then masked,
and participants received a “faster” message on late re-
sponses. These modifications should largely remove any
variance of interest from latency data; RT effects are thus
not reported.

Practice blocks of 20 trials each were run for the task of
discriminating the valence of the attribute words and for
the task of discriminating the color of the target words.
Four mixed blocks of 44 trials each followed, of which the
first was introduced as a practice block. Order of trials was
fully randomized, except that a mixed block always started
with four attribute trials. Of the remaining 40 trials, 20 were
attribute trials (10 positive, 10 negative) and 20 were target
trials (10 positive, 10 negative). Within one mixed block,
each attribute stimulus appeared twice; each target stimulus
appeared once in each color.

A trial started with a 1,000 ms pause. A fixation cross
was presented in the center of the screen for 350 ms and
was replaced by the stimulus, which was removed from
screen after 200 ms and replaced by a black screen until a
response was registered. In case of an incorrect response,
an error message was displayed for 400 ms. The next trial
commenced 200 ms after a response was registered or after
the offset of an error message.

Results

Traditional EAST error difference scores and model-based
analyses are reported. EAST error scores were computed
by subtracting the proportion of errors in target trials that
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required a positive response from the proportion of errors
in trials requiring a negative response. Positive scores thus
reflect positive evaluations; negative scores reflect nega-
tive evaluations.

EAST Scores

EAST scores are given in Table 1. A 3 (Condition) × 2
(Color assignment) × 2 (Valence) ANOVA with repeated
measures on the last factor revealed a main effect of va-
lence, F(1, 61) = 20.93, p < .001, MSE = 0.012. It was
qualified by a Condition × Valence interaction, F(2, 61) =
8.39, p = .001. Separate analyses revealed that valence ef-
fects were obtained in the control and dissimilar conditions,
F(1, 21) = 21.24, p < .001, and F(1, 21) = 16.47, p = .001,
but not in the nonword condition, F < 1.

A positive EAST score was obtained for positive words
in the control condition, t(22) = 2.94, p < .05, and in the
dissimilar condition, t(22) = 2.38, p < .05. A negative score
was obtained for negative words in the control and the dis-
similar conditions, t(22) = 2.06, p = .05, and t(22) = 4.29,
p < .001. The scores for the arbitrarily assigned positive

and negative nonwords did not differ from zero, t(20) =
1.80 and t(20) = 1.06, ns.

Model Analyses

A joint model was computed for the data from all three
conditions. Separate A and C parameters were estimated
for the control, the dissimilar, and the nonword conditions
respectively; a single B parameter was estimated (see Table
2). With N = 5360 data points and a = b = .01, the good-
ness-of-fit test was able to reliably detect small effects (w
= .08). Model fit was good, G²(5) = 6.10, critical G²(5) =
15.09. The model thus describes the data well, justifying
the equality restriction on the B parameters. Two necessary
conditions for identifiability were given: Sufficient degrees
of freedom were available and repeated runs of the estima-
tion algorithm consistently returned the same parameter es-
timates. We thus conclude that our model is identifiable.
Parameter estimates are given in Table 3.

The A parameter was significantly different from zero in
the control and dissimilar conditions, ΔG²(1) = 31.69 and
ΔG²(1) = 25.29, both p < .05, but not in the nonword con-

Table 1. EAST scores [95% confidence intervals] for Experiments 1–4

Stimulus valence

Experiment Condition Positive Negative Neutral

1 Control 0.09 [ 0.03 0.15] –0.07 [–0.14 0.00]

Nonwords –0.07 [–0.15 0.01] –0.05 [–0.13 0.04]

Dissimilar 0.06 [ 0.01 0.12] –0.07 [–0.10 –0.03]

2 0.01 [–0.02 0.04] –0.07 [–0.10 –0.04] –0.01 [–0.04 0.02]

3 Words 0.07 [ 0.03 0.10] –0.07 [–0.11 –0.02]

Nonwords –0.02 [–0.05 0.02] –0,07 [–0.11 –0.03]

4 Negative-Majority –0.02 [–0.06 0.02] –0.14 [–0.19 –0.09] –0.08 [–0.11 –0.04]

Positive-Majority 0.07 [ 0.04 0.11] –0.05 [–0.09 –0.01] 0.06 [ 0.03 0.08]

Table 2. Empirical probabilities, estimated parameters, and degrees of freedom. Number of empirical probabilities and
number of estimated parameters are given in brackets; degrees of freedom are computed as the difference between
these numbers.

Exp. Empirical probabilities1 Estimated parameters df

1 Condition (control, nonwords, dissimilar) × stimulus valence
(positive, negative) × required response (positive, negative)
(12)

AControl, ANonwords, ADissimilar, B, CControl, CNonwords, CDissimilar

(7)
5

2 Stimulus valence (positive, negative, neutral) × required re-
sponse (positive, negative)
(6)

APos/Neg, ANeutral, B, CPos/Neg, CNeutral

(5)
1

3 Stimulus type (word, nonword) × stimulus valence (positive,
negative) × required response (positive, negative)
(8)

AWords,Negative, AWords,Positive, ANonwords,Negative, ANonwords,Positive, B, CWords,
CNonwords

(7)

1

4 Majority (positive-key, negative-key) × stimulus valence (posi-
tive, negative, neutral) × required response (positive, negative)
(12)

ANegMaj,Negative, ANegMaj,Positive, ANegMaj,Neutral, APosMaj,Negative, APosMaj,Positive,
APosMaj,Neutral, BNegMaj, BPosMaj, C
(9)

3

Note. Exp. = Experiment, Neg = Negative, Pos = Positive, Maj = Majority, df = degrees of freedom. 1For each cell of the design, one probability
p(correct) is obtained.
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dition, ΔG²(1) = 0, ns. The color manipulation did not affect
the A parameter estimates, ΔG²(1) = 0.62, ns. However, the
color manipulation affected the C parameter as predicted:
Dissimilar colors increased the C parameter estimate,
ΔG²(1) = 4.78, p < .05, reflecting the predicted higher prob-
ability for controlled processing of stimulus color in the
dissimilar compared to the control condition. Additional
tests revealed that the C parameter was smaller in the non-
word condition than in the control and the dissimilar con-
ditions, ΔG²(1) = 40.82 and ΔG²(1) = 68.9, both p < .05.
The B parameter differed from the neutral value of .5,
ΔG²(1) = 5.71, p < .05, indicating a response tendency to-
ward the negative key.

Discussion

The results of Experiment 1 demonstrate a dissociation be-
tween the automatic activation of valence captured by the
A parameter and the controlled processing of the task-rel-
evant feature of color captured by the C parameter. An au-
tomatic activation of valence, as measured with the A pa-
rameter, occurred only for stimuli that carry valence (i.e.,
positive and negative words), not for neutral nonword stim-
uli. The A parameter was not affected by manipulations of
the task-relevant feature of ink color, whereas the C param-
eter decreased as the similarity of the colors (and thus the
difficulty of the discrimination) increased. The good model
fit implies that the two manipulations did not have an effect
on response bias (i.e., it implies that a single B parameter
suffices).

However, the dissociation is not a double dissociation
because an unexpected effect of the valence manipulation
was observed on the C parameter: The probability of con-

trolled processing of stimulus color was smaller in the non-
word than in the control condition. This effect can be in-
terpreted in two ways: It can be an effect of the valence
present in the words but absent in the nonwords, or it could
be an effect of the word-nonword difference itself, regard-
less of their respective valence. In the former case, it would
be a threat to the validity of the model because the model
does not postulate effects of valence on the controlled pro-
cessing of the task-relevant feature. In the latter case, when
the effect is due to the word-nonword difference, it can be
interpreted as an aspect of controlled processing (e.g., dif-
ferences in strategies or in motivation of processing a
standard vs. a nonwords EAST) and thus would not threat-
en the model’s validity.

Experiment 2

To determine which of the two interpretations is correct,
we conducted a second experiment in which we replaced
the nonwords with neutral words, thus eliminating the va-
lence-word/nonword confound, and implemented a within-
subjects design to exclude global strategic or motivational
effects. If the unexpected effect on the C parameter reflects
differences in controlled processing of words versus non-
words, we would expect an effect of the valence manipu-
lation on the A parameter and no effect of the manipulation
on the C parameter.

To further generalize the results, we chose a different
task-relevant feature: In Experiment 2, target words were
flanked with either the @ or the # symbol as task-relevant
stimulus features. All words were presented in white ink
on a black screen. To increase the difficulty of the task (and

Table 3. Parameter estimates [95% confidence intervals] for Experiments 1–4

Parameters

Experiment Condition Stimulus valence A B C

1 Control Pos/Neg .08 [.05 .11] .45 [.40 .49] .85 [.82 .88]

Nonwords Neutral .00 [–.04 .04] .67 [.63 .71]

Dissimilar Pos/Neg .06 [.04 .09] .88 [.85 .91]

2 Pos/Neg .04 [.02 .06] .38 [.30 .45] .88 [.86 .90]

Neutral .00 [–.03 .03] .87 [.84 .90]

3 Words Negative .06 [.02 .09] .42 [.33 .52] .89 [.86 .92]

Positive .07 [.04 .11]

Nonwords Negative .04 [.01 .08] .87 [.84 .90]

Positive .01 [–.02 .04]

4 Negative-Majority Negative .09 [.05 .13] .28 [.20 .36] .88 [.86 .90]

Positive .04 [.02 .07]

Neutral .04 [.00 .05]

Positive-Majority Negative .09 [.06 .12] .72 [.64 .81]

Positive .02 [–.02 .07]

Neutral .00 [–.03 .04]

Note. Italicized parameters values also apply to subsequent conditions and/or stimuli where a value for that parameter is omitted.
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the error rate as a basis for estimating the model parame-
ters) the intertrial interval was reduced to 700 ms.

Subsequent to the EAST, the d2 Test of Attention (Brick-
enkamp, 2002) was administered. This measure was in-
cluded to explore individual differences in controlled task
processing captured by the C parameter. Results are report-
ed in the latent-class analysis section below.

Method

Participants

Forty Saarland University students participated. One par-
ticipant’s data was excluded because of performance at
chance level (error rate of .47). The remaining sample con-
sisted of 18 men and 21 women (ages from 20 to 38 years,
Mdn = 24).

Materials

The positive and negative words from Experiment 1 were
used. An additional set of neutral target stimuli was select-
ed from the Hager and Hasselhorn (1994) norms; mean
pleasantness rating of M = –0.19 did not differ from the
scale’s neutral point, t(4) = 0.32, ns. Target stimuli were
presented with either one of the symbols @ and # on both
sides (e.g., #happy#) in white ink on a black screen.

The d2 test consisted of 14 rows of letters with different
numbers of dashes above or below each letter. The time
participants took to mark all d’s with two dashes (i.e.,
speed) and their omission and commission errors (i.e., ac-
curacy) served as dependent variables.

Design

A 2 (Stimulus set: A vs. B) × 2 (Symbol assignment: @-
negative vs. #-negative) × 3 (Valence: positive, negative,
neutral) × 2 (Required response: positive vs. negative) de-
sign was implemented with repeated measures on the last
two factors.

Procedure

Procedure was identical to that of Experiment 1 with the
following exceptions: In the symbol discrimination prac-
tice blocks, target words were presented once with each of
the two symbols, resulting in 30 trials. The mixed blocks
consisted of 64 trials each, of which the first four were
attribute trials. Of the remaining 60 trials, 30 were attribute
trials (15 positive, 15 negative) and 30 were target trials (10
positive, 10 negative, 10 neutral). Within one mixed block,
attribute stimuli appeared three times; target stimuli ap-
peared once with each symbol. Trials started with a 700 ms

pause. Following the EAST procedure, participants com-
pleted the d2 test that was introduced as a concentration
test. Participants were instructed to work as fast and as ac-
curately as possible.

Results

EAST Scores

The EAST scores are given in Table 1. A 2 (Stimulus set)
× 2 (Symbol assignment) × 3 (Valence) repeated-measures
ANOVA revealed only a main effect of valence, F(2, 70)
= 10.00, p < .001. The EAST score for negative words was
significantly below zero, t(38) = 4.84, p < .001, but the
EAST score for positive words did not differ from zero,
t(38) = 0.83, ns. The EAST score obtained for neutral
words did not differ from zero, t(38) = 0.88, ns.

Model Analyses

Separate A and C parameters were estimated for valenced
and neutral target words; one single B parameter was esti-
mated (see Table 2). With N = 4680 and a = b = .01, the
goodness-of-fit test was again able to reliably detect small
effects (w = .07). Model fit was good, G²(1) = 1.21, critical
G²(1) = 6.63; parameter estimates are given in Table 3.

Estimates of the A parameter differed between valenced
and neutral stimuli, ΔG²(1) = 9.03, p < .05. Additional tests
revealed that, as predicted, the estimate of A for valenced
words was significantly larger than zero, ΔG²(1) = 18.06,
p < .05, whereas the estimate for neutral words did not
differ from zero, ΔG²(1) = 0.01, ns. Estimates of the C pa-
rameter did not differ between positive/negative and neu-
tral stimuli, ΔG²(1) = 0.33, ns. The B parameter estimate
differed from the neutral value of .5, ΔG²(1) = 9.65, p <
.05, reflecting again a tendency toward the negative key.

Discussion

As predicted, a dissociation was found between the A and
C parameters. A within-subjects manipulation of stimulus
valence (positive/negative versus neutral words) affected
the automatic activation of valence, and this was reflected
in the A parameter. The valence manipulation did not affect
the controlled processing of the task-relevant feature; ac-
cordingly, and as predicted, no effect was found on the C
parameter. Response bias B was not affected by the valence
manipulation, as the model fit implies. Combined with the
results of Experiment 1, these findings validate the model
parameters: The A parameter measures task-irrelevant in-
terference of stimulus valence on valent responses in the
EAST and is not affected by manipulations of task difficul-
ty. The C parameter measures processing of task-relevant
features and is not affected by the valence of stimuli.
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Experiment 3

A third experiment was conducted to replicate the above
dissociation and to demonstrate the model’s usefulness as
a tool to tap affective processes. In the previous experi-
ments, the finding of a positive evaluation of clearly and
inherently positive words and a negative evaluation of
clearly negative words is not much of a surprise. To be
useful as a measurement tool, the model should be capable
of capturing more subtle evaluations. In this experiment we
used evaluatively conditioned nonwords as target stimuli,
along with positive and negative words. We predicted that
the model would accurately reflect effects of the acquired
valence of evaluatively conditioned neutral stimuli. To test
that prediction, four separate A parameters for negative
words, positive words, conditioned-negative nonwords,
and conditioned-positive nonwords were estimated.

Method

Participants

Twenty-four University of Freiburg students participated.
One participant’s data was excluded because of perfor-
mance at chance level (error rate of .51). The remaining
sample consisted of 11 males and 12 females (ages from
19 to 32, Mdn = 23).

Materials

The positive and negative words and nonwords from Ex-
periment 1 were used. EAST target stimuli were presented
in blue or green ink on a black screen. For the evaluative
conditioning phase, a set of 25 positive and a set of 25
negative IAPS pictures (Lang, Bradley, & Cuthbert, 2005)
were used, mean pleasantness ratings: M = 7.9 and M = 2.5,
respectively, t(48) = 117.80, p < .001.

Design

A 2 (stimulus set: A vs. B) × 2 (color assignment: blue-neg-
ative vs. green-negative) × 2 (stimulus type: words vs. non-
words) × 2 (valence: positive vs. negative) × 2 (required
response: positive vs. negative) design was implemented
with repeated measures on the last three factors.

Procedure

The evaluative conditioning phase was introduced as a sim-
ple learning task. Participants saw pairs of pictures and
nonwords on the computer screen and were told to memo-
rize the pairs for a later memory test. Each nonword-picture

pair was presented on screen for 2,500 ms; no response was
required. Throughout the conditioning phase, each non-
word was paired with five pictures of the same valence,
resulting in 25 pairs of nonwords and pleasant pictures and
25 pairs of nonwords and unpleasant pictures, presented in
a fully randomized sequence. The complete set of 50 pairs
was presented twice in immediate succession.

The EAST procedure was identical to that of Experiment
1 with the following exceptions: In the color discrimination
practice blocks, each target item was presented once in
each of the two colors, resulting in 40 trials. Mixed blocks
consisted of 84 trials each. The first four were attribute
trials; of the remaining 80 trials, 40 were attribute trials (20
positive, 20 negative) and 40 were target trials (10 positive
words, 10 negative words, 10 positive nonwords, 10 nega-
tive nonwords). Within one mixed block, attribute stimuli
appeared four times, and target stimuli appeared once in
each color.

After completing the EAST, participants were asked to
rate the pleasantness of each of the target words and non-
words on an 8-point Likert scale (1 = very unpleasant, 8 =
very pleasant).

Results

Pleasantness Ratings

Ratings of the positive and negative words (M = 6.70 and
M = 2.63) significantly differed from the scale midpoint of
4.5, t(22) = 6.16 and t(22) = 5.45, respectively, both p <
.001. Ratings of negative nonwords (M = 3.73) but not of
positive nonwords (M = 4.58) differed from the scale mid-
point, t(22) = 3.17, p < .05, and t(22) = 0.37, ns, respec-
tively. Ratings of positive words and positive nonwords as
well as of negative words and negative nonwords differed
from each other, t(22) = 5.54, p < .001, and t(22) = 2.92, p
< .05, for words and nonwords, respectively. Thus, al-
though the mean rating of positive nonwords did not differ
from the scale midpoint, and the valence effects were
weaker than those obtained for words, the conditioning
procedure was successful in manipulating the valence of
the presented nonwords.

EAST Scores

EAST scores are given in Table 1. A 2 (Stimulus type:
words vs. nonwords) × 2 (Valence: positive vs. negative)
repeated-measures ANOVA revealed a main effect of Stim-
ulus type, F(1, 22) = 7.56, p < .05, MSE = .006, indicating
a more positive EAST score for words (M = 0) than for
nonwords (M = –0.04). A main effect of Valence, F(1, 22)
= 22.50, p = .001, MSE = 0.009, indicated a more positive
EAST score for positive items (M = 0.03) than for negative
items (M = –0.07). A marginally significant Stimulus type
× Valence interaction was found, F(1, 22) = 4.29, p = .05,
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MSE = 0.007. Separate t tests revealed that it was due to
the lack of a significant positive score for positive non-
words: Mirroring the explicit pleasantness ratings, a nega-
tive score was obtained for negative words, t(22) = 2.84,
and negative nonwords, t(22) = 3.76, both p < .05, and a
positive EAST score was obtained for positive words, t(22)
= 4.11, p < .05, but not for positive nonwords, t(22) = 0.98,
ns. However, EAST scores were significantly more posi-
tive for positive (compared to negative) words, t(22) =
4.17, p < .001, and for positive (compared to negative) non-
words, t(22) = 2.54, p = .02.

Model Analyses

Separate A parameters were estimated for positive and neg-
ative words and nonwords. Note that an A parameter esti-
mate greater than zero is interpreted differently depending
on the valence of the stimuli: It reflects the automatic acti-
vation of positive valence for positive stimuli, whereas for
negative stimuli, it reflects the activation of negative va-
lence.2 A single B parameter was estimated. Separate C
parameters were estimated for words and nonwords (see
Table 2). With N = 3680 and a = b = .01, the goodness-of-fit
test was again able to reliably detect small effects (w = .08).
Model fit was good, G²(1) = 2.72, critical G²(1) = 6.63;
parameter estimates are given in Table 3.

As predicted, estimates of the A parameter were signif-
icantly different from zero for positive and negative words,
ΔG²(1) = 18.19, and ΔG²(1) = 8.66, respectively, both p <
.05. For negative nonwords, the estimate of A was signifi-
cantly larger than zero, ΔG²(1) = 5.2, p < .05. For positive
nonwords, this was not the case, ΔG²(1) = 0.68, ns, accu-
rately reflecting the absence of an evaluative conditioning
effect in the pleasantness ratings. Estimates of the C param-
eter did not differ between words and nonwords, ΔG²(1) =
0.51, ns. The B parameter did not differ from the neutral
value of .5, ΔG²(1) = 2.36, ns.

Discussion

The evaluative conditioning procedure was partially suc-
cessful in manipulating participants’ evaluation of previ-
ously neutral stimuli. Nonwords paired with negative pic-
tures were evaluated more negatively than nonwords paired
with positive pictures, as reflected in the pleasantness rat-
ings and in EAST error scores. However, only the evalua-
tion of nonwords paired with negative pictures differed
from the neutral point of the scale. The evaluative condi-
tioning effects were accurately captured by the A parame-
ter. No difference was observed in controlled processing
between words and evaluatively-conditioned nonwords.

These effects replicate the dissociations obtained in Exper-
iments 1 and 2, demonstrating that valence manipulations
are adequately reflected in the A parameter and do not af-
fect the C parameter.

The results from Experiment 3 extend the above find-
ings by demonstrating (a) that the C parameter is not af-
fected by a within-subjects manipulation of the nature
(word or nonword) of the stimulus, and (b) that separate
A parameter estimates can be obtained within a single
EAST experiment and that these separate estimates ade-
quately capture the valence of different sets of stimuli.
The present results also demonstrate that the model pa-
rameters can not only capture well established valence as-
sociations but can also accurately reflect newly acquired
valence originating from a short (4 min) acquisition phase.
In addition, and equally important, the results demonstrate
that parameter estimates accurately reflect the nonrelative
valence of single sets of stimuli: Mirroring the pleasant-
ness ratings, an automatic activation of valence was found
for negative and positive words, but only for negative, not
for positive nonwords.

Experiment 4

Response biases pose a potential threat to the validity of
the EAST score as a nonrelative measure of valence. To
illustrate this, imagine a participant who responds with the
positive key to every trial in an EAST. The error rate for
stimuli requiring a positive-key response would be zero,
whereas the error rate for stimuli requiring a negative-key
response would be at a maximum. Thus, a maximally pos-
itive EAST score would result, regardless of the valence of
the stimuli. The EAST score does not allow one to discrim-
inate whether this result reflects an evaluation of the target
stimuli (as one would have to assume) or mere response
bias (as would in fact be the case).

Response bias however is unproblematic if the ABC
model is used to analyze EAST effects because it will be
captured by the B parameter and leave the A parameter un-
affected. This ability to separately assess the contributions
of different cognitive processes is a core advantage of the
multinomial modeling approach over simple difference
scores.

A fourth experiment was conducted to establish the un-
biased nature of the model parameters as measures of the
underlying cognitive processes and to validate the re-
sponse bias parameter B. To this end, the proportion of
positive vs. negative key presses was manipulated be-
tween participants to induce a bias toward one of the re-
sponse keys. Two conditions were realized in which either
41.7% or 58.3% of responses were to be given with the
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negative key. Positive, negative, and neutral words were
used as target stimuli. We expected the EAST error differ-
ence score to be biased toward the evaluation of the ma-
jority key. When the majority of responses is to be given
with the positive key, participants should tend to use the
positive key more often in cases of uncertainty, even when
pressing the negative key is required for a correct re-
sponse. This should increase the probability of an error in
trials that require a negative response, and lead to a more
positive EAST score, compared to when the majority of
responses is to be given with the negative key. Response
bias will be captured by the B parameter and leave the A
and C parameters unaffected.

Method

Participants

Sixty-four University of Freiburg students (27 male, 37 fe-
male; ages from 18 to 42, Mdn = 22) participated in the
study.

Materials

The positive, negative, and neutral words from Experiment
2 were used. In addition, neutral filler words were used for
the proportion manipulation. Target stimuli were presented
with either one of the symbols @ or # in white ink on a
black screen.

Design

A 2 (Proportion of negative-key responses: 58.3% vs.
41.7%) × 2 (Stimulus set: A vs. B) × 2 (Symbol assignment:
@-negative vs. #-negative) × 2 (Response key assignment:
negative-right vs. negative-left) × 3 (Valence: positive,
negative, neutral) × 2 (Required response: positive vs. neg-
ative) design was implemented with repeated measures on
the last two factors.

Procedure

Procedure was identical to that of Experiment 2 with the
following exceptions: In the symbol discrimination prac-
tice blocks, each target word was presented once with
each of the two symbols. Five filler trials were presented
that were mapped onto the majority key, resulting in 35
trials. The mixed blocks consisted of 124 trials each. The
first four were attribute trials; of the remaining 120 trials,
60 were attribute trials (30 positive, 30 negative), 30 were
target trials (10 positive, 10 negative, 10 neutral), and 30
were neutral filler trials (5 mapped onto the minority key
and 25 mapped onto the majority key; five of the latter

type were presented immediately after the initial four at-
tribute trials). Within one mixed block, each attribute
stimulus appeared six times; each target stimulus ap-
peared once with each symbol. Thus, in a mixed block, 70
of 120 trials (58.7%) required a response with the majority
key, and the remaining 50 trials (41.7%) required the al-
ternative response.

Results

EAST Scores

EAST scores are given in Table 1. A 2 (Key proportion:
negative-majority vs. positive-majority) × 2 (Key assign-
ment: left = negative vs. right = negative) × 2 (Symbol
assignment: @ = negative vs. # = negative) × 2 (Sets: A vs.
B) × 2 (Stimulus valence: positive, neutral, negative)
ANOVA of the EAST scores with repeated measures on
the last factor revealed the predicted main effect of key
proportion, F(1, 48) = 41.81, p < .001, MSE = 0.013. In the
negative-majority condition, EAST scores were more neg-
ative than in the positive-majority condition (M = –0.08
and M = 0.03, respectively). A main effect of Valence was
also found, F(2, 96) = 28.95, p < .001, MSE = 0.009; sep-
arate t tests revealed that positive stimuli (M = 0.03) scored
more positively than neutral stimuli (M = –0.01), t(63) =
2.59, p < .05, and that neutral stimuli scored more positive-
ly than negative stimuli (M = –0.09), t(63) = 4.94, p < .001.
An interaction of stimulus valence with the symbol assign-
ment factor was observed, F(2, 96) = 4.45, p < .05, indi-
cating that negative stimuli scored more negatively when
the @ symbol was assigned to the negative key, F(1, 48) =
10.43, p < .05; no effects of symbol assignment were ob-
served on positive and neutral stimuli, both F < 1. This
interaction did not qualify the above main effect: Negative
stimuli scored more negatively than neutral and positive
stimuli in both symbol assignment conditions, smallest
t(63) = 2.43, largest p = .02.

The EAST difference scores are reported here to illus-
trate the distorting effect of the proportion manipulation.
Independent-sample t tests confirmed that the proportion
manipulation affected the EAST scores for all stimuli,
smallest t(62) = 3.1, largest p = .003. For neutral words, a
negative EAST score was obtained under the negative-ma-
jority condition, M = –0.08, t(31) = 4.63, p < .001, whereas
a positive score was obtained under the positive-majority
condition, M = 0.06, t(31) = 5.04, p < .001. For positive
words, the EAST score did not differ from zero under the
negative-majority condition, M = –0.02, t(31) = 0.84 ns,
whereas it was positive in the positive-majority condition,
M = 0.07, t(31) = 4.36, p < .001. For negative words, a
strongly negative score was obtained under the negative-
majority condition, M = –0.14, t(31) = 6.1, p < .001. It was
greatly reduced, but still significantly smaller than zero,
under the positive-majority condition, M = –0.05, t(31) =
2.7, p < .05.
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Model Analyses

Separate A parameters were obtained for positive, negative,
and neutral target words in the negative-majority and the
positive-majority conditions.3 Separate B parameters were
estimated for the negative-majority and positive-majority
conditions; one single C parameter was estimated across
conditions (see Table 2). With N = 7680 data points and a
= b = .01, the goodness of fit test was able to reliably detect
small effects (w = .06). Model fit was again good, G²(3) =
4.86, critical G²(3) = 11.34. Parameter estimates are given
in Table 3. The predicted effect of the proportion manipu-
lation on the B parameter was obtained, ΔG²(1) = 38.1, p <
.001; a B estimate smaller than .5 was obtained under the
negative-majority condition, ΔG²(1) = 21.92, p < .001, in-
dicating a bias toward the negative-key, and a B estimate
larger than .5 was obtained under the positive-majority con-
dition, ΔG²(1) = 18.78, p < .001, indicating a bias toward
the positive-key. Also as predicted, the A parameters were
unaffected by the response bias manipulation, ΔG²(3) =
4.49, ns. Instead, the A parameters accurately captured the
evaluation of target stimuli: For negative words, an esti-
mate significantly larger than zero resulted, ΔG²(2) =
69.13, p < .001, indicating a negative evaluation. For pos-
itive words, an estimate significantly larger than zero,
ΔG²(2) = 16.21, p < .001, indicated a positive evaluation;
whereas for neutral words, the estimate did not differ from
zero, ΔG²(2) = 4.91, ns, indicating a neutral evaluation.

Discussion

The proportion manipulation successfully induced a re-
sponse bias toward the majority key, resulting in the pre-
dicted distortion of EAST scores but leaving the A param-
eters unaffected. This clearly demonstrates the unbiased
nature of the A parameter as a measure of automatic acti-
vation of valence, and thus, the superiority of an analysis
of EAST effects within the framework of the ABC model.

A Latent-Class Hierarchical Analysis

A potential threat for the validity of multinomial models is
the problem of parameter heterogeneity. In most applica-
tions, data are aggregated across participants for analysis.
In doing so, one assumes that parameter values are equal
across participants. If this assumption is violated, a levels
of significance tests are inflated above the nominal level,
leading to erroneous rejection of models due to lack of fit
(Klauer, 2006). Thus, whenever a multinomial model is re-
jected by traditional goodness-of-fit tests, this may be due
to its not describing the mean category frequencies ade-

quately, or, alternatively, because of parameter heterogene-
ity, despite its being an adequate description of the data.
Whenever a multinomial model achieves a good fit in tra-
ditional tests, there might however still be a sizeable
amount of parameter heterogeneity, potentially increasing
the actual a level of significance tests in hypotheses tests
and thereby leading to erroneous substantial conclusions.
In applications of multinomial modeling, the homogeneity
assumption has rarely ever been evaluated, even in do-
mains where heterogeneity can be expected on theoretical
grounds, because tests were not readily available until re-
cently.

Klauer (2006) introduced a new framework, called la-
tent-class hierarchical multinomial models, that provides
statistical tests to assess the homogeneity assumption and
that constitutes a new family of models that can be applied
if the parameter homogeneity assumption is violated. Hi-
erarchical multinomial models differ from traditional mul-
tinomial processing tree models in that they provide sepa-
rate parameter estimates for a specified number of latent
classes, and estimates of the proportion of participants that
belong to each latent class. They are equivalent to tradi-
tional multinomial models in case of a single latent class.
If parameter homogeneity is violated in the single-class
model, a model with two or more latent classes can be com-
puted, allowing for different parameter values in each class,
and thus capturing the parameter heterogeneity. In a nut-
shell, hierarchical multinomial models provide different
sets of parameter estimates for each of two or more latent
classes.

To evaluate whether parameter heterogeneity was pre-
sent and whether it compromised the above validation re-
sults, we reanalyzed the data from the four experiments.
Although there was substantial parameter heterogeneity in
all four data sets, the validation results obtained with the
traditional analyses were confirmed. The majority of the
extant parameter heterogeneity was located in the C param-
eter assessing controlled task processing. To illustrate the
application of hierarchical multinomial models, the reanal-
ysis is reported in detail for Experiment 2.4

As a first step, parameters and goodness-of-fit tests for
a single class were computed. This single-class solution
achieved good fit to the mean category frequencies, as in-
dicated by the traditional log-likelihood ratio statistic G²(1)
= 1.21, p = .11, and the mean structure test statistic M1

suggested by Klauer (2006), M1(1) = 0.36, p = .55. How-
ever, parameter homogeneity was violated, as indicated by
the variance-covariance structure tests S1(16) = 465.09, and
S2(21) = 565.27, both p < .05. In a second step, two latent
classes were computed that were free to differ in their pa-
rameter values. If the diagnosed parameter heterogeneity
is adequately captured by the two-class model, the vari-
ance-covariance structure tests S1 and S2 should be ren-
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dered insignificant. This was indeed the case, S1(11) = 6.5,
p = .84, and S2(21) = 28.85, p = .12. Parameter estimates
for the two-class solution are reported in Table 4.

To check whether the results obtained with the tradition-
al analyses were distorted by parameter heterogeneity, we
repeated the hypotheses tests reported above. Results were
confirmed for the A parameter: It differed between val-
enced and neutral words, Δl(2) = 11.59, p < .05, and was
larger than zero for valenced words, Δl(2) = 17.17, p < .05,
but not for neutral words, Δl(2) = 0, ns.5 Results were also
confirmed for the C parameter: No difference between val-
enced and neutral words was found, Δl(2) = 4.64, p = .10.

Next, the source of parameter heterogeneity was located
by testing equality restrictions across classes. Setting the A
parameters equal across classes did not lead to a significant
loss of fit, Δl(2) = 2.33, ns. We conclude that participants
did not differ in their automatic activation of valence. The
test reached significance for the B parameter restriction,
Δl(1) = 4.18, p < .05, indicating that response biases dif-
fered between classes. The test also reached significance
for the C parameters, Δl(2) = 76.91, p < .05, indicating that
the probability of controlled processing of the task-relevant
feature differed between classes.

The latent-class analysis allowed us to test the parameter
homogeneity assumption. We found that it was violated:
Whereas the larger class of participants showed a very high
probability of controlled responses, leaving only a small
proportion of responses to be determined by guessing (with
a tendency toward the negative key), a minority of partic-
ipants had a much smaller probability of controlled pro-
cessing, leading to a much larger proportion of responses
determined by guessing; for those participants, no response
bias was observed.

The main difference between latent classes was found in
controlled processing. This might be due to differences in
focus on speed versus accuracy or, to put it differently, dif-
ferences in motivation to process the task accurately and
diligently. To strengthen this interpretation, and to validate
the latent-class analysis, we investigated whether differ-
ences in the C parameter were reflected in differences in
speed versus accuracy of performance on the d2 test. Par-
ticipants were assigned to one of two groups based on their

posterior probability of latent-class membership (with a
cutoff criterion of .5).6 The resulting groups were compared
with regard to mean processing time, and mean omission
and commission errors in the d2 test in a 2 (stimulus set) ×
2 (symbol assignment) × 2 (class membership) multivariate
ANOVA. The groups differed in the mean time they took
for completion of the d2 test, F(1, 29) = 4.21, as well as in
the mean rates of omission and commission errors, F(1, 29)
= 5.66, and F(1, 29) = 5.20, all p < .05. Group 1 participants
(those with a high posterior probability of belonging to la-
tent class 1) took about a minute longer to complete the test
(M = 438 s and M = 382 s, for Groups 1 and 2, respectively),
and made less errors of omission (M = 10.54) and commis-
sion (M = 0.47) than Group 2 participants (M = 34.74 and
M = 1.45). Group 1 participants processed both the d2 task
and the EAST very accurately and diligently, whereas
Group 2 participants focused on speed in both tasks and did
not reach high levels of accuracy. This result provides sup-
port for the validity of the latent-class analysis and corrob-
orates the interpretation that differences in C parameter es-
timates between latent classes in the EAST are due to in-
dividual differences in focus on speed versus accuracy of
performance.

Across all four experiments, analyses within the latent-
class hierarchical framework have revealed that (a) where-
as the mean structure was described well by the traditional
models, parameter homogeneity assumptions were violat-
ed in all data sets, (b) nevertheless, the results pertaining to
the mean parameter estimates obtained with the traditional
analyses were confirmed, (c) participants differed in the
degree of diligence or accuracy motivation, as reflected in
differences in controlled processing of the task-relevant
feature.

General Discussion

A multinomial process dissociation model of EAST perfor-
mance was introduced and successfully validated in four
experiments. In all four experiments, differences in auto-
matic activation of stimulus valence were reflected in dif-

Table 4. Parameter estimates [95% confidence intervals] of the two-class solution of the latent-class hierarchical model
applied to the data from Experiment 2

Parameters

Latent class Class weight Stimulus valence A B C

1 .61 Pos/Neg .02 [.01 .04] .31 [.17 .45] .94 [.91 .97]

Neutral .00 [–.05 .05] .92 [.87 .98]

2 .39 Pos/Neg .06 [.02 .10] .46 [.37 .55] .77 [.72 .82]

Neutral .00 [–.09 .09] .70 [.62 .78]

Note. Italicized parameters values also apply to subsequent conditions and/or stimuli where a value for that parameter is omitted.
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ferences in parameter A. In Experiment 1, differences in
controlled task processing were captured by parameter C.
In Experiment 4, response bias was shown to be accurately
reflected in estimates of parameter B.

Double dissociations were obtained for the A and C pa-
rameters. In Experiment 1, a controlled task processing ma-
nipulation affected C but left A unaffected. In Experiments
2 and 3, valence manipulations affected A but left C unaf-
fected. The A and B parameters were also successfully dis-
sociated: In Experiment 4, a response bias manipulation
affected B but left A unaffected, and the good model fit
across all experiments implies that response biases were
unaffected by the valence manipulations in Experiments 1
through 3.

In Experiments 3 and 4, it was shown that A constitutes
a nonrelative measure of the automatic activation of va-
lence of single sets of stimuli (as opposed to a relative mea-
sure comparing two sets of stimuli) that accurately reflects
the valence of the stimulus sets (Experiment 3). The A pa-
rameter was shown to be an unbiased measure as it was
unaffected by a response bias manipulation (Experiment 4)
that substantially distorted the EAST error score.

In sum, the ABC model provides a framework for sep-
arately measuring the contribution of the three postulated
processes to EAST performance. The model’s A parameter
can be considered superior to the EAST score as a measure
of the automatic activation of valence because it is unaf-
fected by differences in controlled processing and/or re-
sponse biases. By analyzing EAST data with the ABC
model, one can benefit from the EAST’s ability to assess
the nonrelative valence of single (sets of) stimuli, which
puts it at an advantage over other, relative measures of au-
tomatic activation of valence. This might be especially in-
teresting if the EAST is applied as an indirect measure of
automatic components of attitudes, as in clinical or social
psychology.7 With the ABC model, we thus provide a mea-
surement tool that can help researchers and practitioners
make use of the advantages of the EAST.

Comparison with Other Models

Related multinomial models have been proposed for simi-
lar tasks, for example Jacoby’s (1991) model (cf. Payne,
2001), and the QUAD model (Conrey et al., 2005). We
consider these models less appropriate for EAST data. As
pointed out above, to obtain unbiased parameter estimates,
a model must be able to account for guessing tendencies,
which the Jacoby (1991) model cannot accomplish. The
QUAD model includes such a guessing parameter, and in
addition, a fourth parameter (OB) that aims at capturing the
process of overcoming automatic activation. Capturing this
process would also have been of theoretical interest in the

present research. However, it appears that OB estimates are
often not useful because of large confidence intervals. For
example, in their Experiment 5, Conrey et al. (2005) report-
ed OB estimates of 1.0 and 0.0 that could be set equal with-
out significant loss of fit. Furthermore, for technical rea-
sons (i.e., lack of degrees of freedom), it was not possible
to apply the QUAD model to EAST data. As a conse-
quence, we developed and validated the three-parameter
ABC model. The results show that EAST data can be ac-
counted for with the three postulated parameters, rendering
it unlikely that the process of overcoming automatic acti-
vation substantially contributes to EAST performance.

Diffusion models (e.g., Ratcliff & Rouder, 1998) could
provide additional insight into the underlying processes of
the EAST because they consider accuracy and latency data
simultaneously. However, estimating diffusion model pa-
rameters requires complex algorithms and extensive com-
putations, and user-friendly software is not currently avail-
able. These obstacles render diffusion models practically
inapplicable for most EAST researchers and practitioners.
For the future, however, we believe diffusion-model ap-
proaches to EAST data are a promising route.

Parameter Heterogeneity

The present model can be used to obtain parameter esti-
mates for individual participants; those estimates can sub-
sequently be entered into correlational analyses. From the
theoretical standpoint, the A parameter clearly is a more
valid measure than the traditional EAST score. The ques-
tion whether the A parameter empirically proves to provide
a more valid measure of individuals’ attitudes needs to be
addressed in future research.

Where individual parameter estimates are not required,
latent-class hierarchical multinomial models can be used to
diagnose and capture interindividual differences in param-
eter estimates. With an easy-to-use computer program
(HMMTree; Stahl & Klauer, in press), latent-class hierar-
chical analyses can be applied to traditional multinomial
processing tree models, given that individual category fre-
quencies are available. We presented a first and successful
application of this new family of models, and the results
clearly show that they are a useful addition to the research-
er’s toolbox.
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The present data had mean error rates of 11.7%, 8.2%, 9.9%, and 8.0%, for Experiments 1–4, respectively.
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