Is learning in a conditioning procedure with valent targets unconscious?

Philine Thomasius^a

Christoph Stahl^a

Tony Greenwald^b

^a University of Cologne, ^b University of Washington

Learning phase and conditioning test

- Replication of Greenwald & De Houwer (2017)
- Learning phase:
 - Task: pleasant / unpleasant target? (2AFC)
 - Response window \rightarrow fast responding
 - 100 % contingency between CS and US
- Conditioning test:
 - Same task
 - 50 % contingency
 - Better performance for congruent than for incongruent trials

Study	Cohen's d	95% CI		
Exp.2, Masked, 70 ms Exp.2, Masked, 80 ms Exp.3, Masked, 80 ms Exp.4, Masked, 80 ms	0.31 0.59 0.22 0.24	[0.11; 0.52] [0.34; 0.85] [0.10; 0.33] [0.14: 0.35]		
Random effects model Heterogeneity: $I^2 = 61\%$, τ	0.30 ² = 0.0089, p =	[0.18; 0.42] 0.05	-0.5	0 0.5
			Cond	ditioning effect

Unconscious learning? Data by Greenwald and De Houwer (2017)

- Visibility test:
 - Same sequence of stimuli as in the conditioning test
 - Task: Which CS was shown? (2AFC)
- Regressing the conditioning effect on visibility:
 - Zero slope: "conditioning independent of the visibility of the CS"
 - Positive intercept: "conditioning in the absence of visibility of the CS"
 - → Double evidence for unconscious learning

Zero slope:

Conditioning independent of the visibility of the CS?

- G&DH: Only error variance in the predictor \rightarrow under-estimation of the slope
 - Our study: Higher mean visibility \rightarrow more systematic variance \rightarrow unbiased estimation of the slope
- G&DH: Application of regression analysis despite measurement error in the predictor \rightarrow under-estimation of the slope
 - Our study: Application of the Errors-in-variables correction (Klauer, Draine, & Greenwald, 1998) \rightarrow unbiased estimation of the slope
- G&DH: Significantly positive slope in 1/9 studies (α =5%, one-sided), Meta-analysis with r = .10, 95% CI [0.04, ∞], z = 2.70, p = .004, l^2 =0.0%, τ_{SI}^2 =0.003
 - Our study: Significantly positive slope in 3/4 studies (α =5%, one-sided), Meta-analysis with r = .15, 95% CI [0.05, ∞], z = 2.40, p = .008, l^2 =18.5%, τ_{SI}^2 =0.006

No!

- G&DH: The objective visibility might be under-estimated due to a task-difficulty artifact (Pratte & Rouder, 2009) \rightarrow over-estimation of the intercept
 - Our study: Insertion of easier trials between the difficult objective visibility trials \rightarrow unbiased estimation of the intercept
- G&DH: Application of regression analysis despite measurement error in the predictor \rightarrow over-estimation of the intercept
 - Our study: Application of the Errors-in-variables correction \rightarrow unbiased estimation of the intercept
- G&DH: Significantly positive intercept in 8/9 studies (α =1%, two-sided)
 - Our study: Significantly positive intercept in 2/4 studies (α =1%, two-sided)

Is the Errors-in-variables correction a valid method to test unconscious learning?

- The intercept is over-estimated by the Errors-in-variables correction...
 - For various distributions of the predictor (Miller, 2000)
 - Even for truncated normal distributed data (Malejka)
- The over-estimation might be less severe in our study
 - Simulation of huge samples by Miller (Klauer & Greenwald, 2000)
 - Simulation of steep slopes by Miller (Klauer & Greenwald, 2000)
 - Simulation of too few true zero predictor values by Miller (Klauer & Greenwald, 2000)
- \rightarrow Simulations of realistic data that parallels our experimental data

- Simulations with truncated normal distributed data:
 - Unbiased estimation of the intercept with the Errors-in-variables correction
 - The observed intercept is very unlikely compared to the distribution of simulated intercepts (α =1%)

- What if the data is not truncated normal distributed?
- Simulations with bootstrapping from our experimental data:
 - (Slightly) biased estimation of the intercept even with the Errors-in-variables correction
 - The observed intercept is likely, compared to the distribution of simulated intercepts (α =1%)

Summary and Conclusion

- We replicated a conditioning effect in a speeded classification task with masked CSs and regressed the effect on the objective visibility of the CSs.
- G&DH: Zero slope \rightarrow "Conditioning independent of the visibility of the CS"
 - Our study: Methodological and statistical improvements (more systematic variance, motivation trials, Errors-in-variables correction) revealed that the conditioning effect is moderated by objective visibility.
- G&DH: Positive intercept → "Conditioning in the absence of visibility of the CS"
 - Our study: Depending on the distribution **the intercept might be over-estimated**.
 - However, in some of G&DH's experiments objective visibility seems to be absent in the whole sample and still they observed a conditioning effect.
 - To interpret their data as conditioning in the absence of objective visibility, it needs to be ruled out that the objective visibility was under-estimated due to a task-difficulty artifact (Pratte & Rouder, 2009).

Is learning in a conditioning procedure with valent targets unconscious?

- Get the slides:
 - <u>http://methexp.uni-koeln.de/de/members/philine-thomasius/</u>
- Contact:
 - Philine Thomasius, University of Cologne, philine.thomasius@uni-koeln.de
- References
 - Klauer, K. C., Draine, S. C., & Greenwald, A. G. (1998). An unbiased errors-in-variables approach to detecting unconscious cognition. *British Journal of Mathematical and Statistical Psychology*, *51* (2), 253–267.
 - Greenwald, A. G., & De Houwer, J. (2017). Unconscious conditioning: Demonstration of existence and difference from conscious conditioning. *Journal of Experimental Psychology: General*, 146(12), 1705–1721.
 - Pratte, M. S., & Rouder, J. N. (2009). A task-difficulty artifact in subliminal priming. *Attention, Perception, & Psychophysics*, 71(6), 1276–1283.
 - Miller, J. (2000). Measurement error in subliminal perception experiments: Simulation analyses of two regression methods. *Journal of Experimental Psychology: Human Perception and Performance*, 26 (4), 1461– 1477.
 - Klauer, K. C., & Greenwald, A. G. (2000). Measurement error in subliminal perception experiments: Simulation analyses of two regression methods—comment on Miller (2000). *Journal of Experimental Psychology*. 26 (4), 1506–1508.